UNCLASSIFIED

w 408965

DEFENSE DOCUMENTATION CENTER

FOR
SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA, VIRGINIA

UNCLASSIFIIED

NOTICE: When government or other drawings, speci-
fications or other data are used for any purpose
other than in connection with a definitely related
government procurement operation, the U. S,
Government thereby incurs no responsibility, nor any
obligation whatsoever; and the fact that the Govern-
ment may bhave formlated, furnished, or in any way
supplied the said drawings, specifications, or other
data 1is not to be regarded by implication or other-
wise as in any manner licensing the holder or any
other person or corporation, or conveying any rights
or permission to manufacture, use or sell any
patented invention that may in any way be related
thereto.

¢d

as AD No.208965

cATALOGED BY DDC

B L R T

408 965

NRL Repoert 5976
NAREC Reference 29

NELIAC-N

A TUTORIAL REPORT

J. W. Kallander
Applied Mathematics Staff
Office of Director of Research
U.S. Naval Research Laboratory
and

R. M. Thatcher

U.S. Naval Post Graduate School
Monterey, California

June 17, 1963

NDC

RSBt

U JuL 18 963

G‘."._-
7

TisiA D

U. S. NAVAL RESEARCH LABORATORY
Washington, D.C.

NAREC REFERENCE #29

PREFACE

The purpose of this document is to describe in detail
the syntax of the U., S, Naval Research Laboratory NAREC
version of the NELIAC language; namely, NELIAC.N, This
version of the NELIAC compiler was written by Charles A,
Tapella of the U, S, Navy Electronics Laboratory, San Diego,
California, and John W, Kallander of NRL, was obtained
through the courtesy of Dr, Maurice H, Halstead, Head,
Computing Center, NEL, and was implemented on the NAREC by
John W, Kallander. NELIAC-N is based on and is very similar
to NELIAC-T-1604,

This document is tutorial in nature and is not intended
to be definitive of NELIAC-N, The report 'The NELIAC Com-
piler Language, U, S, Naval Postgraduate School CDC-1604
Version'", was written by Richard M, Thatcher, Department of
JOperations Research, USNPGS, Monterey, California, and
published by the USNPGS in January 1963. This CDC-)604
Version Report has been rewritten to pertain to NELIAC-N and
expanded by John W, Kallander of the Research Computation
Center, NRL, and the result is this document, An additional

report defining NELIAC-N will be issued at a later date,

NAREC REFERENCE #29, p,.2

However, this tutorial report should be studied in detail by
any person considering programming in NELIAC-N, and should be
thoroughly understood before using the definitive report which
will follow,

Dr, Halstead's published book Machine-Independent Computer

Programming (Spartan Books, Washington, D.C,, 1962) describes
the basic NELIAC language, provides guidance in developing
compiler programs and contains much interesting background re-
garding NELIAC that could not be included in this description
of the NELIAC language as implemented on a particular computer,
It is desirable, although not necessary, that the user of this
document read through the first three chapters of Dr, Halstead's
book before, or concurrently with, studying this more detailed
work,

Credit is due Sidney W, and Catherine B, Porter, Comput-
ing Center, NEL, for writing NELIAC 1604-N, the intermediate
compiler used to debug NELIAC-N to the point of self-compila-
tion; to Maurice Brinkman, RCC, NRL, for his considerable and
prolonged aid while debugging the compiler and training NRL's
programmers and scientists in the use of NELIAC-N; and to
Mrs, Elizabeth Wald, also of the RCC, for writing the NELIAC-N

Library of Functions,

ii

P

¢

NAREC REFERENCE #29

Much credit also must be extended to Mrs,., Rose Skinner,
Branch Secretary, RCC, for typing and correcting the compiler
flowcharts through all of its numerous recompilations, for
typing the extensive group of test programs necessary to
raising the NELIAC-N compiler to its present level of develop-

ment, and for typing this entire manuscripf.

Richard M, Thatcher
Dept. of Operations Research

U, S, Naval Postgraduate School

John W, Kallander

Research Computation Center

U, S, Naval Research Laboratory
April 1963

iii

v

TABLE OF CONTENTS

.

CHAPTER

I. INTRODUCTION
Characters of the NELIAC Language
General Programming Rules
NELIAC Program Structure (General)
NELIAC Flowchart
Comments

ALGOL Words

II, THE STORAGE PART
Definition of Names
Constants and Variabkiles
Dimensioning Fixed Point Variables
Dimensioning Floating Point Variables

Hexadecimal Notation

11}, ARITHMETIC OPERATIONS
Basic Operations
Hierarchy of Arithmetic Operations
Examples of Arithmetic Statements

Fixed and Floating Point Packages

PAGE

[l ¥
L] 4

(I

TABLE OF CONTENTS (continued)

CHAPTER

Iv,

VI,

VIiI.

TRANSFER OF CONTROL
Normal Jumps

Subroutines and Return Jumps

DEC IS IONS
Comparison Statements
Nested Decisions

Boolean Jperators

SUBSCRIPTED VARIABLES
Subscripted Straight Jumps

Subscript Package

LOOP CONTROL .

VIII, FUNCTIONS

1X,

PROGRAM STRUCTURE

Computer Space Limitations

PARTIAL LOCATION OPERANDS (Bit Handling)
Part Varihble Jperands

Part Location Variables

vi

PAGE

31
K]
33

36
36
42
4y

46
49

50

517

57

64
va

76
17
81

TABLE OF CONTENTS (continued)
CHAPTER

XI, OUTPUT STATEMENTS
Print Variables
Literals
Complete Output Statements

I0 Package

X1I, ADDRESSES OF NAMES

Absolute Addresses

XIII, LIBRARY OF FUNCTIONS

Library Package
X1V, MACHINE LANGUAGE CODING
XV, PARALLEL NAMES
XVI, DIAGNOSTICS AND DUMPS

APPENDIX A - Summary of the NELIAC Operator Symbols
APPENDIX B - NELIAC-N Dimensioning Statement
APPENDIX C - NELIAC-N Forbidden Names

APPENDIX D - NELIAC-N Coding Sheet

APPENDIX E - NELIAC-N Operator Instruction Sheet

vii

PAGE

85
87
96
99
107

104
105

108
LRA

14
119
121

130
136
137
139
140

ABSTRACT

This report contains a tutorial descrip-
tion of NELIAC-N, the version of the NELIAC
language implemented on the NAREC by means of
the NELIAC-N compiler, NELIAC is a problem-
oriented, machine-independent programming lang-
uage which enables programmers, scientists, and
engineers to write their programs in a mathemat-
ical language rather than requiring an actual
machine language or an assembly language, NELIAC
thus minimizes the knowledge of the actual com-
puter required by the programmer, maximizes the
readability of the programs themselves, and pro-
vides carry-over value of programs from one com-
puter to another,

PROBLEM STATUS

This is an interim report; work on this
problem is continuing,

AUTHORIZATION

NRL Problem B02-03B
Project RR 003-09-41-5101

Manuscript submitted May 31, 1963,

viii

NAREC REFERENCE #:9

NELIAC-N, A TUTORIAL REPORT

I, INTRODUCTION

A NELIAC program is a means of expressing a
computer problem in terms much closer to an algebraic
language than the detailed step-by-step instructions
of actual machine language, A program written in the
NELIAC language is comprised of statements and proper
punctuation, This language is interpreted and trans-
lated by the NELIAC compiler which generates the actual
machine instructions or object program understood by a
computer, Jne must, therefore, adhere strictly to the
rules of the language 2s each statement, set,off by
proper punctuation, has definite significance to the

compiler,

NR#: 9, p,.

NAREC REFERENCE #29, p.2

CHARACTERS OF THE NELIAC LANGUAGE

The NELIAC vocabulary is constructed from the following
symbols:

THE NELIAC CHARACTER SET
1234567890
abcdefghijklmnopqgqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWIXYZ2
P A
(Yot
+ - %/t |
=F<><

un#

Although the uses of the characters are described in detail
later in this document, it might be well to note here the
names of the last 26 of them:

s Comma

H Semicolon

: Colon

. Period

() Left and right parentheses

[] Left and right brackets

NR#29, p.2

N~ vVOA R

W

v
N
#

Statements, each denoting a specific action, are built from

Left and right braces
Plus

Minus

Multiply

Divide

Exponent sign, or Up arrow
Arrow, or Right arrow
Absolute sign

Equal

Not equal

Less than

Greater than

Less than or equal to
Greater than or equal to
or

And

Hexi sign

NAREC REFERENCE #29,

this character set into a NELIAC program,

GENERAL PROGRAMMING RULES

p.3

All computer programs require part of the computer

memory for storage of numerical values pertinent to the

NR#29, p.3

NAREC REFERENCE #29, p.4

pioblem, These memory locations are used by the program in
the sense that the program obtains values from them in order
to perform indicated operations on them, These memory loca-
tions are set by the program in the sense that the program
stores intermediate and final results of computation into
them, Thus, any program can be broken into two parts: the

storage part and the operating, or program logic, part.

When a programmer writes a program in compiler language
he must tell the compiler what the storage requirements will
be. The compiler automatically handles the problem of de-
ciding which locations of memory will actually be used for
storage. In the NELIAC language, storage requirements are
specified by the programmer by making up identifiers or
names to which the compiler program will automatically
assign memory locations. Throughout a given program, any
name, once assigned, will refer to the same memory location
or group of memory locations. An exception to this rule
(namely, temporary or local names) will be explained later,
The numerical values contained by these memory locations are
then referenced by name in the program logic part where
dynamic operations are indicated., Consider the following

example:

NR#29, p.4

NAREC REFERENCE #29, p.5

Algebraic Equation NELIAC Statement
A+B=C s A+ B->C,

The algebraic equation states that the value of A is added
to the value of B, This sum is equivalent to the vzlue of
C. The NELIAC statement is more dynamic in that g2 certain
action is implied by the right arrow, This right arrow is

a store operator; thus, the value in the memory location
referenced by the name A is added to the value referenced by
the name B and the sum is stored into the memory location

named C, That the store operator is not equivalent to the

equal sign can be seen from the following example:
» A2 + 1 > A2,

The NELIAC statement says to add one to the value in the
location referenced by the name A2, This sum is to be com-
puted and stored back into the location referenced by A2

thereby replacing the old value by the new,

NR#29, p.5

NAREC REFERENCE #29, p.6

NELIAC PROGRAM STRUCTURE (General)

The two parts of a computer program, the storage part
and the operating part, are handled in NELIAC by the dimep-

sioning statement (or noun list) and the program logic (or
body of the program), respectively.

In the dimensioning statement, the programmer specifies
storage requirements by making up names to which the compiler
will assign storage locations, Each location so named is
called a variable since it is possible for the program to
change its value, A group of memory locations to which the
programmer assigns only one name is defined as a table (of
variables), also called an array (a one-dimensional array
usually being referred to as a list), Later in this docu-
ment it will be seen how the programmer may assign a name

to part (i.,e., certain bits) of a memory location or in the

case of a table (array or list), how he may assign a name
to the same part of each location of the table, Each part-
memory location so named then becomes a variable, In the
dimensioning statement the programmer also assigns initial
values and specifies the mode and number format of cach
variable and indicates output formats for variables whose

values are to be printed,

NR#29, p.6

NAREC REFERENCE #29, p.7

The program logic is the operating part of the program
which indicates the sequence of dynamic operations to be per-
formed., Basic to the structure of the program logic are the
statements of which it is comprised, Comparable to ordinary
English, statements of program logic are set off by punctua-
tion symbols of which there are 5:

s Comma

; Semi-colon

¢ Colon

. Period

.. Double Period
the double period being used only to indicate the end of the
program logic part and, hence, the end of the flowchart (or
subprogram), Following is an example of two statements which

might be used to compute the expression

and store the result into location G:
, A*B->H, (H+C)/ (H-2*C)~>GgG,

This is not a complete program, however. Only part of the

program logic is illustrated above, Every name used by

ngi pa7

NAREC REFERENCE #29, p.8

these statements must be defined beforehand or later in a
dimensioning statement (or in a function definition)., A
complete flowchart to perform this simple task for specified

values of A, B, and C might be as follows:

NELIAC FLOWCHART NOTES

5 Load Number signifying the beginning of
the flowchart to the compiler,

1, Dimensioning Statement: Initial values
are specified and names assigned to each

1, memory location, Note that locations are
s allocated and given an initial value of
’ zero when initidl values are not speci-
field, A final comma in the dimensioning
statement is normally omitted since the
semicolon also functions as this comma,

[]
LY
-

H The first semicolon indicates the begin-
ning of the operational portion of the
flowchart,

COMPUTE : COMPUTE is the name of this flowchart,

This type of statement is called a defin-
ition or label,

A *B->H, Program logic: A strict left to right

(H+C)/ (H-2%C)~G, flow is followed, Spacings, indentationms,
blank lines do not alter the flowchart in
any way (except in the case of the ALGOL
words which will be explained later), A
final comma in the program logic is norm-
ally omitted since the double period also
functions as this comma (except for sub-
routine and function calls),

.o The double period indicates the end of
the flowchart,

NR#29, p.8

NAREC REFERENCE #29, p.9

NELIAC FLOWCHART

Although a NELIAC program may consist of a single
dimensioning statement followed by a single block of pro-
gram logic and, indeed; short NELIAC programs are written
in this form, it is very convenient and, at times, abso-
lutely necessary, to be able to write programs s a series
of subprograms called flowcharts, each of these flowcharts
having the form of a NELIAC program; i.e.,, a dimensioning
statement followed by the program logic, All of the sub-
programs or flowcharts comprising a single NELIAC program
are compiled together in a single compiler sweep in an
order determined by the programmer just as if the entire
program were written as a single unit, Hence, a programmer
may write and check out a long program as several independ-
ent units; in fact, the flowchart concept makes feasible
the compilation of long and difficult programs whose various
subprograms have been written and checked out by different
programmers, In addition, the flowchart concept makes the
correction of program units, the substitution of new units
for old units, and even the addition and removal of units,
a trivial procedure, Finally, the finite memory space of

any computer requires that very long NELIAC programs (more

NR#29, p.9

NAREC REFERENCE #29, p.10

than ten to fifteen double-spaced typed pages in the case of
the NAREC) b-> written as two or more separate flowcharts;
although, even here, the number, size, and arrangement of the
flowcharts is still entirely up to the programmer's discre-
tion subject solely to the limitation that no flowchart

exceeds the maximum length dictated by a computer memory size,

Inasmuch as the structure of and the language used in
each of these'subprograms are ldentical to the structure and
language of a program written as a single NELIAC unit (or
flowchart), the programmer need only consider a program as
consisting of a single unit throughout most of this document,
Toward the end of the document, he will see how the exten-
sion of everything he has learned about the NELIAC language
and the NELIAC program naturally applies to multiple-unit

progranms,

COMMENTS

It is often helpful to insert comments in English to
the NELIAC language in order to clarify the meaning of the
program to the reader, This capability is provided by
NELIAC-N according to the following rules:

1. Enclose the comment in parentheses,

NR#QQ.' PJO

NAREC REFERENCE #29, p,11

2, A colon must be placed as the next operator after
the left parenthesis, The colon may be placed
immediately after the parenthesis, or any word or
phrase which meets the NELIAC definition of a
name may be inserted betwefn them, The word
COMMENT is customarily inserted here,

3. Any words, numbers, or symbols may be included in
the cooment with the exception of the right paren-
thesis which signals the end of the comment and the
double period (.,,) which signals the end of the
flowchart to the compiler,

4, Comments may be inserted between any two statements
of the dimensioning statement or the program logic,

5. Normal punctuation should either precede or follow
the parentheses. |

EXAMPLE:
, A > B, (COMMENT: A - B means to store the
current value of location A into
location B,)
JOf course, comments are meant to be an aid only to the
reader of the program and have no meaning whatsoever to the

compiler,

ng’ po."'

NAREC REFERENCE #29, p.l2

ALGOL WORDS

In addition to the ALGOL word COMMENT, whose use has
been described in the preceding section, NELIAC also pro-
vides, in a slightly different sense, for the use of the
ALGOL words

GO TO

DO

IF

IF NOT,
and, FOR
to describe (but not define or specify as in ALGOL) certain
procedures in the flowchart., These five words (or word
phrases) when written as above; i.e., when set off by spac-
ing except IF NOT, which must be immediately followed by
a comma (which may or may not be preceded by spacing), and
with internal spacing in GO TO and IF NOT, are known,
in NELIAC, as ALGOL words and have special significance in
the flowchart, They are parenthetical to the compiler;
i.e., they are completely ignored by the compiler (except
when inserted within a double period). As such, they may be
used to describe certain procedures in the printed copy of
the flowchart, However, just as it is certain operator com-
binations which determine (or define) a comment, the word

COMMENT having no meaning (if used at all), it is certain
NR#29, p.12 |

NAREC REFERENCE #29, p.13

operator combinations, and only these operator combinations,
which determine these procedures, the descriptive ALGOL
words having no meaning (if used at all) to the compiler,

The sole function of these words is to improve the reada-
bility of the printed copy of the flowchart, In fact, the
compiler will completely ignore these words no matter where
they are used in the program (except within a double period).
The use of the individual parenthetical words will be descri-

bed as the procedures to which they apply are defined,

Hqwever, if any of these character combinations are
used without the spacing (multiple spaces being equivalent
to a single space) described above in their definitions,
the character sequence will be considered; not as an ALGOL
word to be ignored, but as a bona fide part of the program,
Hence, these character combinations may be used as portions
of names defined by the programmer, It should be borne in
mind that spacings, indentations, and blank lines may alter
a NELIAC program only in the possible determination of these

ALGOL words,

NB#29’ po"s

NAREC REFERENCE #29, p.,'4

11, THE STORAGE PART

DEFINITION OF NAMES

Names are the means by which the programmer refers to‘
and manipulates the quantities in which he is interested in
NELIAC programs, In particular, each name defined by the
programher is assigned a cell or location in the computer
memory (or part cell in the case of partial words), NELIAC
names are divided into two major classes: nouns and verbs,
Nouns are those names defined in the dimensioning state-
ment of the flowchart and of the function definitionms,
Verbs are those names defined in the program logic (exclud-
ing the dimensioning statements of function definitions)
and, as will be seen later, are actually labels or names
of procedures, The rules of formation of all names whether
nouns or verbs are the same and will be given here although
only the definition and usage of nouns will be discussed.,
At the time the definition and usage of the various verbs
are discussed, it should be borne in mind that the general
rules of formation of NELIAC names given here apply to verbs

also,

NR#QQS po.'L"

NAREC REFERENCE #:9,p.'5

Nogns are the means by which a programmer writing in
NELIAC Qontrols the use of computer memory locations for
storage, He assigns a name (specifically, 2 noun) to each
single memory location, each group of memory locations, to
each pa;t-memory location or to each group of part-memory
locatiOQS used for storage. The name itself is left to the
imaginagion of the programmer limited only in that it must
begin w;th a letter of the alphabet, must contain only
letters, spaces, and numbers, and must be uniquely deter-
mined within its first 16 characters excluding spaces and
ALGIL words, Capital and lower-case letters are inter-
changeable and may therefore be used at the discretion of
the writer, Single letters, with the exception of I, J,

K, L, 4, and N, arc permissible names. 7These letters - i,
J, K, I, 4, and N - when standing alone refer to the six
index registers which are always automatically availcble ss
fixed-point, full-word integers having four hexadecimnl
digit JO format and which, consequently, must never be
dimensioned (except as temporary names or as dummy par:me-
ters in function definitions, both of which will be explzin-
ed later), Other names used by the compiler will be dis-
cussed in the appropriate chapters and are listed in

Appendix C,

NR#QQ! 9015

.

NAREC REFERENCE #29,p.16

Examples of legal NELIAC names:

Q

MA 10

INTEGRAL

L2350 HL 543

BEGINNING OF FLOWCHARTS
FORMULA

COMMENT

CONSTANTS AND VARIABLES

A constant is a value not defined by name in the
dimensioning statement but written explicitly in the

program logic, Note the example:

A2 + 1 » A2

where 1 is the stated constant. A constant is thus dis-
tinguished from a variable, the latter being defined in the
dimensioning statement and referenced by name throughout

the program logic, A variable may or may not actually change

its value during the operation of the program,

All numbers in NELIAC may be written in either one of
two modes, fixed point integer or floating point format.
Floating point numbers differ from fixed point in allowing
for decimal fractions as well as integers, and, therefore,
much greater accuracy in computation without requiring

scaling, These numbers are commonly and easily used in

NMQQ) pt.'6

NAREC REFLRENCH #29, p. 7

computer problems as the alignment of decimal coints during

computation is handled automatically,

Following are examples of fixed point constants written

within the program logic,

,..'!0->A,

sy 25~ D~>C,
s A=~ U476 » X,
s B/ (-5) » Y,

In expressing a floating point constant withir the program

logic, a decimgl point must distinguish it from a fixed

point value, As machine operaztions on the two modes, fixed
point and floating point, are quite dissimilar, care must
be taken to avoid mixing modes in arithmetic or store operas-
tions, The exsmples following illustrate the use of legnl}
floating point constants, (Note: The last example is an

illegal stitement using mixed modes,)

» A~ 1,068 > C ,

s 1.0 - b > X,

, 00,0241 > Y ,
)""2500"’2’

y o0 * . 6 - TOLERANCE,

sy 5« 20,0 » @, (COMMENT: ILLFGAL STATLIENT)

The last example, legalized, might read

s 5.0 - 10,0 > CQ,

NR#29, p.17

NAREC REFERENCE #29, p,.i8

For numbers less than one in absolute value; a zero must

be written before the decimal point,

The constant 2ero, whether fixed or floating point,

must always be written as O in logic.

DIMENS ION ING FIXED POINT VARIABLES

Thé initial values of variables to be used in a pro-
gram aré set in the dimensioning statement, and names are
defined‘by which they may be referenced, Throughout the
program logic, variables are treated either as fixed point
or floating point numbers according to the method by which
they are defined in the dimensioning statement, Once a
variable has been dimensioned there is no way whatsoever
of changing its mode or format, In particular storing a
number or variable into another varisble of the opposite
mode will place the current representation of this number
¢r variable into the variable but will not change the modc
ot the latter variable, Hence, it is strictly ftorbidden,
Example 4 illustrates legul definitious of verisbles having
decimal fixcd-point numbers as initial values,

Example A:
HNR OF SAMFLLS = 25 ,
ALPHA == - 10,

BETA - 8437 ,
GAMMA ,

NR#29, p.18

NAREC REFERENCE #29, p.19

Any unique name followed by an equals sign and the value of a
decimal fixed point number is sufficient for defining a
variable of that name with initial value equal to the given
number, Each definition must be separated by a comma, If

a fixed point variable is to be given an initial value of
zero, the name followed by a comma is sufficient, Numbers
are treated as positive unless preceded by a minus sign, In
fact, in the dimensioning statement, a positive number may

not be preceded by the plus sign, but must be unsigned,

When defining a table of variables, the size or length
of this table also must be indicated, The number in_paren-
theses immediately following a name indicates the number of
entries in the table, Irrespective of the mode associated
with the name; this list length must always be in unsigned
fixed point integer - either decimal or hexadecimal, After
the equals sign the values of the initial entries, separated
by commas, are written, Suppose a table is to contain five
variables, Then five memory locations of the computer must
be allocated, The following example defines such a table of

fixed point numbers called TAB X,

TAB X (5) = 5, 45, 8, -3, 8,

NR#EQ, po.'g

NAREC REFERENCE #29, p.20

As shall be studied in detail later, individual values of
the table may be called upon in the program logic through
subscripting of a single name, in this case, TAB X, 1In-
mathematical notation, a subscript usually is written as a
small character below the line; e.g., TAB xo to indicate
the first entry of the table, in this instance, to reference
the location containing the value 5. TAB X.I would refer to
the second entry, (the value 45), etc, In the NELIAC
language subscripting is indicated by the use of brackets
around the subscript in the following manner: TAB X [0],
TAB X [V], TAB X [2], etc, As subscripting in NELIAC begins
with zero, not one, TAB X [3] refers to the fourth entry of
the table which (above) contains a value of -3, Since the
name TAB X without subscript references the first entry of
the table, the use of the notation TAB X [0] is redundant,
but it is nonetheless legal.

Note, in the following example, that twenty-five
locations are allocated for a table named XCOORD, but only

five fixed-point initial values of the table are specified,
XCOORD (25) = 10, 5, -8, 3, 2,

The remaining locations of table XCOORD, since initial

values are not explicitly specified, will contain zero

NR#29, p.20

NAREC REFERENCE #29, p.21

quantities, The definition of an entire table with

initial values of zero is written; e.g., as
PMATRIX (100),

One hundred memory locations are thus reserved for one
hundred fixed point integer values which may be computed
and stored into these locations during operation of the

program,

Zeroes maj be dimensioned implicitly in any cell of a
table by the proper use of punctuation, In the example
below, pirt of the table initially contains zero quanti-
ties, Of course, the zeroes may also be stated

explicitly,

XMATRIX (9) = 5, 6, T,
s =3, L,
s 9 &

- In NELIAC-N, the range of fixed point integers which
may be explicitly represented is from -(1013-1) through
(1013-1) inclusive although NELIAC-N will handle integers
which arise in éalculations up to the range -(244-])

through (2 -1) inclusive,

NR#29, p.21

NAREC REFERENCE #29,p.22

DIMENS IONING FLOATING POINT VARIABLES

Initial floating point values are assigned in the
dimensioning statement in much the same manner as fixed
point values, The essential difference is that floating
point numbers are characterized either by a non-leading
decimal point in the number and/or by multiplying the
number by a power of ten, the ten being only implicitly

stated, (See section headed Constants and Variables for

examples of the proper floating point notation of constants
in the program logic., All forms of floating point numbers
given beélow for dimensioning are valid forms for use in

the program logic with the single exception of the form
(number without a decimal point) * (exponent),)

For example, the nu_ber 500 is written in scientific
notation as 5 o 102. In the NELIAC dimensioning state-
ment, this number might be written as 5 # 2, This number
may also be written as 50,0 * 1 (implying 50,0 - 101),
or as 5000,0 * -1, 5, * 2, 500,, 500,0, etc,, Numbers
of very small or large ia&hitudes are thus conveniently
written; e,.g., the number 0,00005 is written in scientific
notation as 5 ° 10'5, in the NELIAC dimensioning statement

- NR#29,p.22

NAREC REFERENCE #29,p.23

as 5 % .5, as an alternate form. The following example
illustrates proper dimensioning of floating point numbers:

HUNDRED = 100 ¥ O,

PI = 0.37416 * 1,

OHEGA = ""‘.25 * -3,

ZERO = Q0 * 0

E = 2,7182818,

FIFTEEN = 15,,
A table of floating point values is defined in a manner
similar to a table of fixed point values: the defining
name followed by the number (in fixed point notation) of
entries in the table enclosed within parentheses. However,
the entries themselves must be written in floating point
notation,

FLTING TABLE (5) = 5 * 3, 1,23,

0.34, 4,2 * 0,
10,8 * -1,
In the matter of sign, the exponent of a floating

point number differs from all numbers in that the suppres-
sion of the plus sign is not required; e.g.

FL NUMBER = 5 * 6
* +

’
or FL NUMBER = 5 6,

NR#29, p.23

NAREC REFERENCE #29,p.24

A table; initially zero, later to be filled by the
program with computed floating point values may be defined

in the following manner:

T TAB (25)

0 %0,
or

H

T TAB (25) = 0,0,

Because of this definition any variable referenced in the
program logic by the name T TAB and a subscript (which may
be implied for T TAB [0]), will be treated as a floating

point variable,

Likewise;, a period after a name or an array will
define the name or array as floating point with initially

zero value or values:

ZERJ,

T TAB (25),
In the case where such a definition is the last definition
in a dimensioning statement, both the period and semi-

colon are regquired,

The range of floating point numbers in NELJAC-N is

37

from 10”2 through 101307 with characteristics of 36 bit

significance (10 decimal places),

NR#29,p .24

NAREC REFERENCE #29, p.25

HEXADEC IMAL NOTATION

A number format conveniently used by & programmer in
any part of the program is that of hexadecimal notation,
Hexadecimal numbers in the computer are handled as fixed
point integers and in NELIAC-N are distinguished from
decimal fixed point integers by a preceding hexi sign.
Hence, one defines hexadecimal numbers in the dimensioning
statement as illustrated in the examples below:

HEYADECIMAL NR = #2ab7,
MASK 1 = #7f £fff ff,
HEXI TABLE (3) = #2628,
75’4’ ’?
f£1ff,
NEG HEXI NR = -#3A7,
Hexadecimal integer constants are entered directly in the

program logic and used in arithmetic expressions in exactly

the same manner as decimal integer constants:
; #7e3 + B » A ,

The hexadecimal notation may be used for fixed point
integers only, never for floating point numbers, The hexa-
decimal integers are signed just as other numbers, i,e,;
a'plus sign must be suppressed, the minus sign immediately

precedes the hexi sign,

NR#29,p.25

oy

NAREC REFERENCE #29, p.26

The range of hexadecimal integers when used as
numbers is from - (2 -1), through (Euu -1), inclusive,
However, NELIAC-N does accept 45 to 48 bit (i2 hexa-
decimal digit) hexadecimsl numbers in the machine-language

sense of a NAREC word,

Appendix B is a flowchart illustrating the various
forms of dimensioning nouns available in NELIAC-N, The
forms illustratgg_g;e typical dimensioning entries but
are, by no means, exhaustive of the various forms and

combinations available,

NR#.EQ, pg‘_féf:

NAREC REFERENCE #29,p,27

I1I, ARITHMETIC OPERATIONS

BASIC OPERATIONS

The basic arithmetic operations in NELIAC are denoted

by the following symbols:

Addition
Subtraction
Multiplication
Division
Exponentiation

RN L

A mathematical expression may be built up with any combina-
tion of these operators, and algebraic grouping may be as
complex as desired, Every series of arithmetic operations
should terminate with the storage of the result in either

a named variable or an index register by the use of a right
arrow or must terminate in a comparison, A NELIAC state-
ment 1s completed in this manner, and svery such statement
is terminated by a comma (or its equivalent in special
cases), It wust be remembered that the mode of the values
used in any one expression must be consistent; i.,e,, fixed
and filcoating point variables and constants may not be mixed,
For exampie, 1f a variable LOAD has been defined in the
dimensioning statement as a floating point variable, then

the following statement would be illegal:

NR#29,p.27

NAREC REFERENCE #29,p.28
,LOAD + 5 - LOAD,

Nor should the result of a fixed point computation be
stored into a floating point variable, For example, if
the name RESULT is dimensioned as a floating point vari-
able, and the name INTEGER references a fixed point

variable, then the following statement would be illegal:
, INTEGER / 5 -» RESULT,

The sole exception is the zeroing of a floating point
location, If the name RESULT is dimensioned as a float-

ing point variable:
,0 > RESULT,
i,e., the representation of a fixed point zero is used.

In NELIAC:-N, a statement may terminate in a sequence
of store instructions, In fact, a store instruction need
not in itself terminate the series of arithmetic opera-
tions since the store instructiom and all five of the
arithmetic operations listed at the beginning of the chapter
are legal immediately after a sStore instruction, An

example is:

J,A*B.-.C~»D>E+F~»H-1>»J*%K->L/M~>N

>+ 2> P~>»>Q
’ NR#29,p.28

N .U REFERENCE #29,1,29

HIEZRARCAY OF ARITHMETIC OPERATIUNS

The hierarchy of operations consists, first, of
exponzntiation, second, of multiplications and divisions in
seruence from left to right, and, third, additions and
subtrazctions also in sequence from left to right, Paren-
theses may be used to alter the zequonce 6f orerations as
rnieded, The only use for the cxnonentiation symbol is to
multiyiy or divide a fixed point variable by a positive
power o) 2, In fact, B * 2 ¢ -~ - B, merely shifts (cycles)
erithmetically the contents «f B te the left * binary
wlsces, .n the other hand, division by ¢ wogitive posor
wf arithmetically shifts tie¢ varisble to the right b

indicatsrd number of places,

in NELIAC-N, the notation B ¥ t 5 -» B results in the
fell register (48 bit) shift of the contunts of B to the
ieft % binary places, The corresponding division notation

is used for the full register right shift,

The tollowing examples illustrate hierarchy of

srithmetic operations (all statements below ere legal):

NR#29,p.29

NAREC REFERENCE #29,p.30

S _QF THMETIC STATEMENTS

NELIAC STATEMENT EQUIVALENT NELIAC STATEMEN]
1)A+B/C->D, a+(B/C) D,

2) A+ B/ C+D*E->F, A+ (B/C)+ (D*E)>TF,
3) A*2 1t5/B->Y, (A*215)/B-~>Y,

YA/ B/C oz, (4/B)/C»1, _
5) A/ B *C > 2, (A/ B) #¥C » 2,

6) A-B¥C4+D P, A-(B¥C)+b-»P,

7) A/ B¥D/C P, ((A/B) 1) , C-»>P,

FIXED AND FLOATING POINT PACKAGES

In NELIAC- N, fixed point multiplication and division
ie ~ecomplished through return jumps to the subioutines
MULTTPLY and viVIDE respectively, these subroutines being
the fixed point package which is automstically compiled in:

any program rejuiring it,

Likewise, floating point addition;, subtrzction, multi-
plication, and division are accomplished through rcturn
jumps to F14DD, FISUB, FIMUL; and FIDIV respectively in
the floating point package which is automatically compiled

into any program requiring 1it,

Hence, use of these names must be svoided by the pro-
grammer since he can never be sure when either or both of
these packages will be called into a program containing his

flowchart,
NR#29,p.30

NAREC REFERENCE #29,p,31

1V, TRANSFER OF CONTROL

NORMAL JUMPS

In programming, certain conditions which necessitate
skipping over portions of the program to some other point
of entry may be met within the program logic., This would
necessitate transfer of control of the program to a set of
statements other than those continuing in natural sequence,
It is necessary, therefore, to label or define that set of
statements to which a jump is to be mude, This is accom-
plished by assigning a name (which is thus classed as a
verb) preceded by punctuation and followed by a2 colon to

any portion of the program logic,
', ADD: A + B + etC..,.

A jump to this segment of the piogram is specified by the
use of a period following the definitive name., A state-

ment such as
,ADD,

would immediately transfer control, or _jump, to that portion
of the program so defined, in this case, A + B + ..., The
ALGIOL word GO TO described in Chapter I may be used for

descriptive clarity in the fiowchart, in which case the

NR#29,p.3%

P

NARLC REFERENCE #29,p.32

above example becomes
, GO TO ADD,

As is the general case with ALGOL words used in NELIAC,
the GO TO is completely parenthetic, The jump is establish-

ed by the operator combination (punctuation) NAME, ,

In the followipng example, a Jjump made to MULTIPLY
would execute every statement following, including those
labelled COMPUTE, The natural sequence of the program is
followed unless otherwise specified by a jump statement,

s ON: NR PASSES - CT PASSES,
MULTIPLY: A * (B + C, #*D > Z,
P*Q-»Y¥,
COMPUTE: (G * H) / (Y * Z) -» ZJ0,

The assignment of meaningful names to such NELIAC para-
graphs often gives greater coherence to a program even
though a jump to that name is not specified; this device
then becomes merely a labelling device which in itself does

not cause generation of machine instructions,

NR#29,p.32

-

.

NAREC REFERENCE #29,p.33

SUBROUTINES AND RETURN JUMPS

In some cases a return jump is desirable; i.e,, a
jump is made to a special segment of the program called
& subroutine, After the subroutine has been executed,
control is to be returned to the point of the program
logic immediately following that from which the jump was

made,

The naming of a subroutine is familiar -- any unique
name (which is thus classed as a verb) preceded by
punctuation and followed by a colon -- however, the
limits of the subroutine must be defined by braces, The
subroutine may be as long and complex as desired as long
as the limiting braces surround it, Hence, a éubroutine
is easily recognized by the sequence: punctuation,

name, colon, left brace, etc,
Example of a subroutine:
, GENERATE: | RAND, X *# Y » Z |

To execute the statements within the braces, the sub-
routine must be ¢cglled in the following manner (elsewhere

in the program logic):
» GENERATE,

NR#29,p.33

NAREC REFERENCE #29,p.34

where the definitive name is followed by a comma (except
for a subroutine or function call ending an alternative
of a comparison, in which case the semicolon ending the
comparison customarily replaces the comma), indicating a

return jump to the subroutine, The ALGOL word DO may be

used here for additional clarity in the printed copy, the
word DO, of course, being parenthetic. In this case the

preceding example becones:
s DO GENERATE,

Notice, within the subroutine GENERATE, a call for
another subroutine, RAND, is made., After execution of the
statements which must be defined by RAND elsewhere in the
program, the value of X # Y is stored into the variable Z,
and control is transferred back to any statements follow-

ing the call for GENERATE,

To avoid having the sequence of the main program logic
inadvertently flow into a subroutine, all subroutines are
customarily written at the end of flowcharts, It is

necessary to program jumps around such defined subroutines

NR#29, p.34

NAREC REFERENCE #29,p.35

if they are placed in the way, An example will serve to
clarify this point,

, A + B> C, CLEAR, NEXT,
CLEAR: { 0 » I >J->K->L->N->N/}|
NEXT: C + D » E, etc,

In this example, A + B is stored into C, then the 6 index

registers I thru N are cleared to zero by calling on the

CLEAR subroutine, Then in order to keep the program from
illegally trying to operate the CLEAR subroutine as the
next sequence of instructions, it is necessary to jump
around it to location NEXT, where C + D is stored into E,

etc.

It must be noted that while any number of subroutines
may be called within another subroutine (except the sub-
routine itself, of course), no subroutine may be defined

within another subroutine,

NR#29: p [35

NAREC REFERENCE #29,p.36
V. DECISIONS

COMPARISON STATEMENTS

Comparison statements are the means by which questions
may be asked regarding relative values of two or more
variables or constants, Almost any meaningful question may
be asked in the comparison statement by using the following

comparison operators:
<>=F<3

Basic comparison statements are illustrated belqw. Note

the colon must end the comparison statement,

v v W Vv vV e
E R B
VAKREVA
oW w
oo o8 se 00 20 S0

These operators may be joined in the general form
» A<BgC#D ete, :

where the comparison statement has its usual mathematical
meaning, This usage will be described in more detail

later in this chapter, Immediately following the question

NR#29, p.36

NAREC REFERENCE #29,p.37

(comparison statement) two alternatives are written, The
first slternative will be operated if the answer to the

question is true; the second, if the answer is false,

COMPARISON STATEMENT FIRST ALTERNATIVE SECOND ALTERNATIVE
A=B: TRUE FALSE ;

An alternative_lay consist of one or more statements, the

last of which is terminated by a semicolon (or a period)

rather than a comma to indicate the end of the alternative
as well as the end of a staténent. Unless an alternative
itself breaks up the normal sequence o0f the program logig
by specifying a normal jump to some other part of the
program logic, the statement following the false (second)
alternative will be operated next, Consider the following
examples:
g g g i 2 ®C-»>E, I1+1V~»1;
COUNT + 1 +'COUNT, -

Here, a comparison is made: if the value in C is
greater than or equal to that of D, then execute the true
alternative which stores the value in A times the value

in C into location E and adds 7 to index I, If the value

NR#QQ. P. 37

NAREC REFERENCE #29,p.38

of C i3 less than that of D, execute the false alternative
which stores the value in B times the value in C into
location E, In either case, continue by executing the
statement following the false alternative which adds 1 to
COUNT, etc,

In order to make the NELIAC program easier to read,
the ALGOL words IF and IF NOT, , parenthetic as always,
may be added to the comparison statement complex (See
Chapter I), For instance, the last example may be written:

s IFC ,;D: A#®C->E, I+1->1;
IF NOT, B # C > E ;
COUNT + 1 - COUNT ,
These words do not add any meaning to the program, however,

and are ignored by the compiler during compilation,

Constants and the index registers of the compiler also
may be used on either side of a comparison statement,
Again, however, care must be taken to avoid comparing fixed
point values with floating point ones, Algebraic grouping
may be as complex as desired on the left hand side of a
comparison statement;, but the right hand side must consist
of a single unsigned variable (which may be subscripted

and/or bit-handled as explained later) or an unsigned

NR#29,p.38

NAREC REFERENCE #29,p.39
constant, Thus, the following statement is legal:
(A + B) / C > D: TRUE; FALSE;
while a case such as

(COMMENT: ILLEGAL STATEMENT)

D¢ (A + B) / C: TRUE; FALSE;
is illegal, Note, in the case of comparison statements,
the result of an algebraic expression isrnot necessarily

stored into a variable although it may be:
(A+B)/C->X)>D: TRUE; FALSE;

Return jumps and unconditional jumps are legal commands
within either alternative. In the case where unconditional
Jjumps are made, the period instead of a semi-colon will end

either the true or the false statement, Examples:

START, END,

A>B
A#B

oe

c->D, 5,0+ E - F, BEGIN,
RAND, 1 + J ~ J, FINISH;

Notice how the return jump made to the subroutine FINISH
is indicated as FINISH; Though FINISH,; is not in error,

the comma would be redundant in this case,

NR#29,p.39

NAREC REFERENCE #29,p.40

Another illustration of the comparison statement:
Suppose it is desired to set Y to one of 3 values accord-
ing to the following criteriat

8.22 12 0,0 ¢ X < 70,9
Y=16,19 if 10,9 ¢ X < 21,6
24,07 for any other value of X
Then, the program is to continue by transferring control
to MORE, A NELIAC solution might be:
» IFO ¢ X< 10,9 : ORE, MORE, ;
IF 10,9 { X < 21,6 3 TWO; THREE; MORE,
ONE t {8,72 » Y |
CTWO ¢ V6,9 > Y !
THREE : 323,07 -+ Y }
" The above solution is by way ©f illustration, Perhaps a

better solution would be:

0¢ X< 10,9:
8.72 + Y3
10,9¢ Y < 21,68
16,19 » Y3

as described in the next section, NESTED DECISIONS,

NR#29,.p. 40

NAREC REFERENCE #29,p.11

Note that it is always mandatory to indicate the end
of each alternative with either a period or a semicolon

once a comparison statement is written,

If nothing is toc be done within a single alternative,
a semicolon suffices to indicate continuation of the

sequence of the program, Example:
A»C: ; X>2; Y-»>H,

In the case that the relationship in the above
example is true, no statements are executed and the
sequence of the program continues with the value of Y
being stored into H, If any part of the relationship is
false, X is stored into Z and the sequence. continued with Y
being stored into H, The situation may be reversed ahd

nothing done if the relationship is false.

Example:
A»C: X»>2;; Y>H,

In all cases, the termination of eachalternative must be
indicated by either the use of a semi-colon or a period,
The number of statements used in either alternative is un-

restricted,

NR#29,p. 11

NAREC REFERENCE #29,p.42

NESTED DECIS IONS

Decisions may be nesteu within other decisions, Note

the following example:
, LOLIMIT < XCOORD:
RAND, X ; MSW PROB:
5 - MINETABLE;
- 1 - MINETABLE;;
NULL - MINETABLE;

Begin with the comparison LOLIMIT < XCOORD, If the
relationship is true the statements of lines 2, 3, and 4
will be executed; if false, the statement of line 5 will
be executed, Within the first true alternative is a
return jump to the subroutine RAND and another dec¢ision,
The true and false alternatives for this second cﬁlparison
are merely distinguished by semi-colons, With nested
decisions, care must be taken to 1néure that a second

comparison is completed within a single alternative of the

first comparison,

In order to improve readability in writing comparisons,
the convention that successive comparisons will be indented
by multiples of three spaces has been adopted, Fufther-
more true and false alternatives are never placed on the

same line (unless one is nonexistent), Although 1mmateérial

i

NR#29, p. 42

NAREC REFERENCE #29,p.43

to the compiler, it is recommended that this convention be
rigidly adhered to in all nested comparisons and in all but

the simplest single comparisons, Examples are

A = B:

NELIAC-N permits the use of up to 15 active nested

comparisons at any one time,

NR#29,p.43

NAREC REFERENCE #29,p.44

BOOLEAN OPERATORS

The Boolean operators of AND N and OR y may be used
to string a number of these comparisons in a statement,
as long as only one type of operator is used in such a
statement, Note the following examples:

DIMENSION FLAG = O0:

NEXT OPERATOR # COLON N

LEFT BRACKET < CURRENT OPERATOR < RIGHT ARROW:
SET OPERAND,
TEST FOR PASS COMMAND;;;

A<ByC<DyFF#K: TRUE; FALSE;
Note that a statement of the form:
A <B g C#D: TRUE; FALSE;
is really a series of and statements; namely:
A<BNB((CNCZ#D: TRUE; FALSE;

Hence, compound statements of this type may only be linked
with a series of Boolean and comparisons and not with a

series of Boolean or comparisons,

In a group of nested comparisons though, the form of
each individual comparison statement is independent of the

forms of all the other comparison statements,

NR#29,p. 44

NAREC REFERENCE #29,p.45

A string of and comparisons may contain up to 6
individual comparisons; a string of or comparisons may
contain up to 15 individual comparisons, Since there are
different restrictions on the permissible forms of the
left and right sides of a comparison statement, they must
be defined for Boolean strings, The exact definition is
that a right side begins immediately after one of the six
relational operators and is terminated by the next'colon,
Boolean and, or Boolean or, In the case of a Boolean and
or Boolean or, a new left side then begins, In the case
of a statement like A < B (C < D: the right side restrict-

ions apply to all quantities except A,

NR#29, p.U5

NAREC REFERENCE #:9,p,46

VI, SUBSCRIPTED VARIABLES

Suppose, as an example, we wish to compute the sum of
the squares of fifty numbers, Xo 10 XHQ’ and store the
result in SUMSQ, Each element in this table of fifty
variables may be called upon by subscripting the name of
the table X, Subscripting is accomplished by the use of
brackets [] surrounding the number indexing the individual
element of the table, Remember, in NELIAC, subscripting
begins at zero and not one; thus X [0] would refer to the

first value of the table while X [49] would refer to the

last; i,e,, the fiftieth,

Indexing also may be done via one of the 6 index
registers of the compiler, referenced by the names I, J,
K, L, M, and N or by any fixed point variable dimensioned
by the programmer, These registers hay be treated in a
manner similar to any fixed point variable, Within the
program logic, therefore, an element in a table may be
referenced by X [I] and the index register I augmented as

necessary,

NR#"’:gﬁ p'us

NAREC REFERENCE #29,p.47
The most general form of subscripting in NELIAC.N is
OPERAND [SUBSCRIPT ¥ number]

The exact address or location represented by this expression
is obtained as follows: take the address of the name
OPERAND as the base address, add to it the address currently
contzined in the location identified by the name SUBSCRIPT,
and add or subtract (as the case may be) the explicit value
of number, The resulting address is the address of the
variable being referenced by the given expression., In the
expression, OPERAND may be any nume dimensioned in the
program, SUBSCRIPT may be any fixted-pcint entire-word noun
dimensioned in the program (including -he index registers

I, J, K, L, M, and N automatically dimensiohed]fértthe pro-
grammer), and number may be any unsign.d fixed point

integer - decimal or hexadecimal, In this general expres-
sion, all degenerate cases formed from the suppression of
any one or any two of the three guantities involved are valid
forms hzving the meznings immediately derivable from the
general form. The case where the variable OPERAND 1s sup-

pressed is covered in the chapter on ADDRESSES OF NAMES,

NR#29, p. 47

NiiREC REFERENCE #:°9,p,u8

With thas information, we m:y illustrate one method of

accomplishing the sum s:usre problem,

BEG IN:

0 - I » SUMSQ,

COMPUIE SUMSG:

XTIE % X [I] + SUMSG ~ SUMSQ,

I » L. §0: EX{T, COMPUTE SUMSC,

BXIT: ..

All subscripting is accomplished by viriables, includ-
ing the index registers, and/or fixed roint constants,
though, of course. the vziues in the table being subscripted

mzay be all fixed point or all floating point,
Legal subscripted variables:

MAST [}
X {J]
TNT [K
¢ [Jd .- 3
W [INDEA]
Y [NAME - 300]
V [-50]

g

EY -

e

In general, subscripted variables are treated just like
ordinary variables, For cxamuple, they may be used in

arithmetic expressions:
Alr+z2}) «Bild-3j/7Ci{i0)} »D [M]

NE#29, poubl

NAREC REFERENCE #:9,p.u49
t.nd on e¢ither side of a comparison statement:
AiIj B (L3} ¢ C {10] : TRUE; FALSE;
etC.u.

SUBSCELIFTED STRA IGHT JUMPS

one useful feature of the NELIAC language is that
of the Jump Table, 2nother method of branching within the
program logic, Jump tables are defined, within the program
logic, by punctuation, a unique name (which is thus a verb),

a colon, and a series of jump commands.
, JTABLE: JUMPA, JUMPB, JUMPC,

A jump command to an element of this jump table may be

written as
,JTABLE [1],

which indicates an unconditional jump to the Ith element of
the jump table which is, in turn, a command to jump to a
portion of the program defined elsewhere, For example, if
the value of index I = O, the above command will cause a

jump to JUMPA, etc....

NR#29,p.U49

NAREC REFERENCE #29,p,50

Subscripting may be applied only to straight jumps;
i.e., jJumps to entry points, and may not be applied to

return jumps; i,e,, subroutine calls and function calls,

SUBSCRIPT PACKAGE

In NELIAC-N, subscripting by name is accomplished
through a return jump to the subroutine SUBSCRIP contained
in the subscript package which is automatically compiled
into any program requiring it, Hence, this name must not

be used by the programmer,

NR#29,p.50

NAREC REFERENCE #29,p.5%

Vii, LOOP CONTROL

Pérhaps one of the most useful features of today's
high speed computers is the capability of repeating certain
operations; i.e.,, the procedure remains the same, but the
variables used are different, This objective may be accom-
plished in NELIAC by the use of LOOP CONTROL, a method of
indicating the procedure to be followed and the specific
number of times it is to be executed, The use of loop con-
trol along with that of subscripted variables provides a
powerful tool in computation, Considei the following

example,
s 320 ()24 | P[J]+Q[J] > TAB [J] |

The procedure to be repeated is enclosed within braces, with
the loop control preceding, Conventionally,'one of the
index registers (I, J, K, L, M, and N) is used for loop
control and subscripting although any other full-word
integef variable may be used just as efficiently, The
statement above reads that the index register J ié set to
zero and the procedure executed for the first time; thus,

the first value of the table P; i,e., P [0], is added to the

NR#QQ’ po 51

NAREC REFERENCE #29,p.52

tirst value of the table Q; i.e., Q [0], and the sum is
stored into the tirst cell of the tablc, TAB [0], The
index register J is incremented by ' and the loop repeated
this time using variables P[], G[1], and TAB [1], etec,..,
until 25 values (corresponding to the subscripts 0 to

24) are added and stored into the 25 loéations of table
TaAB, Optionally, the parenthetic ALGOL word FOR may be
used for clarity in the printed copy. In that event, the

above example becomes
, FORJ =~ 0 (V) z4 (P [J) + Q [J]) » TAB [J] |}

Let us look closer at the basic format of the loop

control,
FOR ALPHA = BETA (GAMMA) DELTA | PROCEDURE}
ALGOL The Lower Incre- Upper
word Control~ Limit menting Limit
ling of or of
Word Loop Decre- Loop
or menting
Loop Steps
Parameter >

‘+ The AIGOL word FOR in the loop control 1is optionel and
is used only for added readability, It is actually ignored

by the compiler.

NR#ZQ, p052

NAREC REFERENCE #29,p.53

2. ALPHA is the controlling word of the loop control, It
is conventionally an index register though a fixed point

full word variable may be used just as efficiently, Note
that the value of ALPHA may be used as a subscript within

the procedure,

3. BETA contains, or indicates, the first value of the con-
trolling word, It may be a fixed point integer, a fixed
point variable name, another index register, or any one of
these ¥ another, ad infinitum; i.e,, BETA consists of a
theoretically unlimited string of sums and differences of
unsigned, unsubscripted, and unbithandled fixed point

variables and unsigned integer constants,

4, GAMMA, the incrementing or decrementing steps to be

taken, may be a fixed point integer or a fixed point unsub-
scripted, unbithandled variable containing a positive inte-
ger; the latter may be accompanied by a negative sign (see

Note below),

Note: The full meaning of item 4 above should be clarified,
It is legal to decrement in the following manner,

FOR I = A(-1) O
using the explicit value of -1, However, it is illegal for

NR#29,p.53

NAREC REFERENCE #29,p,54

GAMMA to be a variable that conteins an integer equal to
or less than zero, Hence, if the valve in DEC is -1,
then:

FOR I = A(DEC)O

is illegal, On the other hand, if DEC were to contain 41,
then the following is legal:

FOR I = A(<~DEC) O,
5. DELTA, the last limit of the loop, may take any of the
forms of BETA,

6. The procedure itself may be any legal set of statements
ordinarily used within the program logic, including return
Jjumps to subroutines, comparisons, additional loops with

different loop parameters, etc,

From these rules, we can see that all of the following

formats of loop control are legal,

AvB (~1) 0 |

Jd =
'K = I (5) COUNT |
M = NUMBER + 30 (-2) K + 1 | |

yNOUN = 5 (NN) FINISH -1 | |

, I = I (1) END | P
The number of loops executed will never continue beyond the
l1imit of DELTA, A simple example will serve to illustrate

this point,

, FOR I = 0 (2) 5 | |
NR#29! po 5“

NAREC REFERENCE #29,p.55

Obviously, the count will never hit 5; one might expect the
loop to continue indefinitely. However, this is not the
case, The loop will be executed, and whenever incrementa-
tion by 2 will cause the count to be greater than 5, the
loop control will be terminated., Thus, the preceding loop
will be executed three times; i.e,, for I = 0, 2, and 4,
After the completion of any loop, a normal exit will occur
and the next sequence of instructions will be executed,
Similarly, if the loop control is being decremented, the

program will never be operated for a count less than DELTA,

In NELIAC, considering the general loop control state-
ment given in this chapter, the loop increment GAMMA and the
upper limit DELTA are variable; i.,e,, if eithér or both are
altered by the procedure within the loop braces, the new
value(s) of the loop increment and/or upper limit will be
used until altered again, The same condition exists with
respect to the loop parameter ALPHA; i.e., it is this
altered Valﬁe of ALPHA which will be used throughout the
remainder of this repetition of the loop and which, further-
more, will be incremented or decremented at the end of the
repetition, Finally, although alteration of the lower limit
BFETA by the procedure within the loop braces will not affect

NR#QQ, p 055

NAREC REFERENCE #29,p.56

the further repetitions of the procedure during this execu-
tion of the loop control statement, if, at a later time,
control is again transferred to the loop control state-
ment, the new value of BETA will be the value then con-
sidered as the lower limit of the loop paraheter (assuming

BETA has not been changed again elsewhere in the program),

The value of the loop parameter ALPHA upon exiting
from the loop is its value during the last execution of the
procedure within the loop braces (assuming the procedure

does not alter it),

Let us rewrite the program logic of the pievious
example to compute the sum of the squares of tifty vaiues
of xo td Xué,‘aséuming thaf thelnuhber of var;;bles in |
table X has'been d;tined in the‘d;nensioniné statement
NR VALUES = 50, as:

Thus, that portion of the program to compute sum squares
might read:
COMPUTE SUM SQUARES:

0 > SUMSQ, FOR K = 0 (1) NR VALUES -~ 1
| X [K] * X [K] + SUMSQ » SUMSQ | ..

NR#29, p,56

NAREC REFERENCE #29,p.57

V11I, FUNCTIONS

In loop control, the method of indexing tables of
values for computation in similar operations was illustrated,
Jther instances, however, may call for an operation to be
performed several times with different parameters but at
individual points in the program; e.g,, a common routine
to compute square roots may be necessary, In cases such as
this, the NELJAC function notation may be used, This
functional notation enables the programmer to execute a
particular procedure with any desired input parameters
necessary to determine the value(s) of the function with
the result(s) being placed into any desired output para-
meter(s), Though the function is defined but once, it may
be executed at any point of the program logic (except with-
in itself, of course), With the exception of its parameters,
& function is written and executed in a msnner similar

to a subroutine,

An example of the format of the functional definition

is:

PROCEDURE X (W, Y, Z,):
(W*W>Y *W> 2 |

NR#29,p.57

NAREC REFERENCE #29,p.58

The function name is any unique name followed by its
associated dummy parameters enclosed within parentheses,
As with a subroutine, a colon precedes the computational
logic which must be enclosed within braces, This compu-
tational logic may contain all computational procedures
which are valid in the main program except (1) subroutine
and function definitions and (2) calls for itself though

calls for any other subroutine or function are valid,

A function, written in proper notation, must indicate
the mode of both input and output parameters although the
distinction between input and output parameters need not be
indicated here, In fact, in the function definition this
distinction can be indicated to the reader only, not the
compiler, since the distinction is actually made only in
function calls, The arguments within the parentheses
serve the same purpose as the dimensioning statement of a
program (or flowchart); thus, anything legal within a
dimensioning statement (except absolute addressing, see
the chapter ADDRESSES OF NAMES) is legal within the
parentheses, As usual, a comma after fixed point variables
suffices, and here too it is also legal to define floating
point variables with a period only, The variables (with-
in the parentheses) in a function definjtion are merely

NR#QQS po 58

NAREC REFERENCE #29,p.59

dummy names and, therefore, names local to the function sub-
program; thus, the same names may be used elsewhere in the
program without harm, although this is usually inadvisable
since it complicates debugging, understanding, and alter-
ing the program, The instructions within the braces are
equivalent to the program logic, In fact, the function may
be considered as a miniature flowchart accessible only

through its nanme,

Again, as with a subroutine definition, the function
definition does not cause computation to take place, Exe-
cution occurs when the function is called within the pro-
gram logic by writing the function name and specifying the
actual arguments (parameters) to be used, It is here, and
here alone, that the compiler is told which parameters are
to be treated as input and which as output, Note the
following example which executes (i,e.,, calls) the function,

PROCEDURE X, previously illustrated,
s PROCEDURE X (ARG; ANSWER, ANSWER [1]),

The parameters supplied must agree exactly in mode, order,
and number as anticipated by the function definition,
Commas separate the parameters since indication as to mode

is unnecessary (in fact, meaningless) in the calling of a

NR#29,p.59

NAREC REFERENCE #29,p.60

function; the manner in which these variables are treated
is completely determined in the function definition, A
semicolon separates the input arguments from the variables
specified for the output of the "unction, In this case,
the comma normally used after a parameter must be replaced
by the semicolon since its usage here in addition to the
semicolon would not be redundant but would have special

meaning as will be seen later,

The arguments thus supplied as input parameters are
substituted for the corresponding dummy variables in the
definition, the values of the function are computed, and
the values of the dummy variables in the definition are
inserted into the corresponding arguments supplied as out-~
put parameters, As a result of the above call for
PROCEDURE X, ANSWER will be expected to contain the value
of ARG squared, ANSWER [1] the value of ARG cubed, |

As an illustration of legal parameters which may be

used in a function call, note the following example:

FUNCTION Y (A, B[I], C[4); D[K+2], E[F-#300] (16-19)),

NR#29,p.60

NAREC REFERENCE #29,p.6!

The bit notation used in the last parameter will be described
in a later chapter, An example of the definition of dummy

variables which may be used when writing a function follows:

i

XFNCT (X = 0%0, Y(25), D, A = {B}, C: D: |E(24+31), F(24-UT)},

17.578):
| Program Logic}

G

it

The unfamiliar forms of dimensioning will be described in

later chapters,

As has been stated, functions are merely sub-programs
in which the variables within the parentheses are equiva-
lent to the dimensioning statement and the program logic is
contained within the braces, There is no limit to the
number of input parameters which may be entered in a function
definition nor is there a limit to the aumber of output
values which may be computed, However, every function must
have at least one input parameter though it need have no
output parameters, Functions, just as subroutines, should
be defined at the end of a program or its flowcharts, or
necessary jumps should be made over the function segments
of the program, In the following section, we shall learn

a method whereby functions and subroutines may be written

NR#29,p.6)

NAREC REFERENCE #29,p.62
3

]
as separate flowcharts, virtually independent of the main

progranm,

In a function call, the most general forms of the
input parameter are (1) the unsigned general subscripted,
bit-handled noun and (2) any unsigned legal form of a
constant in program logic, The most general form of the

output parameter is form (1) of the input parameter,

The one basic concept which must be grasped in
functional notation is that the correspondence between the
arguments used as parameters in a function call and the
formal parameters dimensioned in the function definition
is solely on the basis of their respective ordering starting
with the first parameter in each case, If a parameter is
defined in a function definition and it is desired not to
utilize this parameter in a particular function call, this
fact must be indicated to the compiler by leaving a blank
space between the commas (one of which may be a semicolon
instead of a comma) where the argument correspondihg to this
formal parameter would normally be placed (unless no further
parhneters in the ordering are to be utilized), Suppose a

function 1s defined as follows
, FUNCTION (U, V, W, X, Y, 2): | Program Logic |,

NR#29, p.62

NAREC REFERENCE #29,p.63
Then, the function call
, FUNCTION (7, 6.341, A [J-4]); B, C[D], E[2]),

will result in the input parameters 7, 6.347, and A[J-4]
being placed into the formal parameters U, V, and W,
respectively, before execution of the procedure defined
as FUNCTION, and the formal parameters X, Y, and Z being
placed into B, C[D], and E[2], respectively, after execu-
tion of the function, However, if it is desired to call
the function leaving the formal parameters U and W un-
changed and only securing, as output, the value of the

formal parameter Y, the function call may be written as
, FUNCTION (, 1,0%, ; , F),

Comparing this function call to the function definition,
the reader will easily see, solely on a basis of ordering,
that the parameter U will be unchanged, a floating point
one million (1 ,0%6) will be placed in parameter V, param-
eter W will be unchanged, the procedure defined as

FUNCTION will be executed for these values of U, V, and

W, then the value calculated and placed in X will be ig-
nored, the value calculated and placed in Y will be placed
in F for use in the main program, and the values calculated
and placed in the remaining parameters; namely, Z, will be

ignored,
NR#29,p.63

NAREC REFERENCE #29,p.64

IX, PROGRAM STRUCTURE
So far, NELIAC programs have been described in terms

of a single load number, dimensioning statement, semi-
colon, program logic, and double period, Actually,
complex programs often consist of several such sub-pro-
grams, called flowcharts, Each separate flowchart must

follow this format headed by leader and followed by leader:

{Leader)

gIlENSIONING STATEMENT

éROGRAM LOGIC

Zieader)

One or several flowcharts (with a maximum of 63)
preceded by a preface and followed by an ending comprise a

program, The preface consists of:

(Leader)
5
(Optional comments)

Program or Programmer's Name,
JObject Program First Address, Bias ,.

(Leader)
Either or both the JObject Program First Address and the

Bias may be left blank in which case standard addresses will
be used for the blanks, The ending consists of:
(Leader)
?ﬂ;ader)
NR#29,p.64

NAREC REFERENCE #29,p.65

A NELIAC program tape consisting of 4 flowcharts may
be represented schematically as (without any attempt at

relative scaling):

PREFACE

1
{

FLOWCHART 1

FLOWCHART 2

{
FLOWCHART 3

FLOWCHART 4

NR#29,p.65

NAREC REFERENCE #29,p.66

Jbviously, the ability to write programs as separate
flowcharts allows one to eliminate the necessity of having
to bypass subroutines and functions within the main program
logic., However, an even more 1mportanf reason for this
structure is to permit the ngme purge feature which is
described in the next paragraph, As shall be seen, this
feature provides a solution to many of the problems en-
countered when several programmers are engaged in writing

different partsAof the same lengthy program,

Suppose, e.g., a programmer wishes to use a subroutine
which already has been written by someone else at some other
time, Obviously, a problem may arise in duplication of
names, as the programmer must avoid using any names already
defined in the subroutine, In NELIAC, this problem is
greatly diminished, since the writer of the subroutine can
purge names that have no significance outside the flowchart
containing the subroutine, Names thus purged may be used
for other purposes in the remaining flowcharts, For
example, a square root subroutine would have virtually all
names purged, The only names not purged would be the ones
necessary to communicate with the main program in a separate

flowchart, In fact, the use of functional notation, rather

NR#29,p.66

NAREC REFERENCE #29,p.67

than subroutine notation, completely eliminates the need

for even these names,

Purging is accomplished by inserting an absolute sign
| anywhere within the name as it is being defined (but not
inserted when the name is used) although, conventionally,

it is placed after the first character of the name,

Purged names within the Dimensioning Statement:

I|NDEX = 6,
T|1,
X| =0 *o0,

Purged names within the program logic:

s C/[ONT : A > B,

s CI[LEAR : {0 » I » J » K|

To reiterate, these names, known as temporary or local
names, will have meaning only in the flowchart where the

above definitions occur,

Now that it is possible for a program to consist of
more than one flowchart, it also becomes possible for a
dimensioning statement to follow part of the program logic
of the program, This possibility necessitates the follow-

ing programming rule:

NR#QQ: P.67

NAREC REFERENCE #29,p.68

Each floating~point, partial-word, and IO format

and IO subscript variable must be defined in a

dimensioning statement (or function definition)

before it is used in any program logic,
Partial words and IO are discussed in later chapters,
This rule is necessary because the NELIAC compiler must
distinguish between the two number formats, floating point
and fixed point, when making up instructions pertaining to
a variable in the program logic, Corresponding necessities
arises in the case of dimensioned partial words and in the

case of format and subscript words referred to in IO

statements,

For example, suppose a programmer wishes to write his
main program as the first flowchart, and include a random
number generator subroutine (called RAND) as the second

flowchart, The pattern is 1illustrated below:

NR#29,p.68

s

NAREC REFERENCE #29,p,69

(Leader)

D,S, 1 gIMENSIONING STATEMENT FOR MAIN PROGRAM
&AIN PROGRAM LOGIC
(Leader)

5
D,S, 2 DIMENSIONING STATEMENT FOR THE RANDOM
NUMBER GENERATOR SUBROUTINE

ﬁAND: JPROGRAM LOGIC FOR RNG SUBROUTINE‘
(Leader) '

Suppose the random number generator stores its random
number in floating point in location X just before exiting.
Since the main program is going to use X, X 1tself must be
defined as a floating point variable in D,S, 1, It would
be illegal to define X as floating point in D,S, 2 because
in that case the main program would be compiled before the

compiler was able to sense that X was to be floating point,

Of course, the way to get around this problem is to write
RAND as a function, defining the output with a dummy out-

put floating point name as follows:

(Leader)

gIlENSIONING STATEMENT FOR RNG SUBROUTINE

éAND (Y; DUMY,):|{(generate a random number) - DUMY |
zﬂeader)

NR#29,p.69

NAREC REFERENCE #29,p,.70

Then with the above RAND function as the second flow=-
chart the following call in the main program logic will
generate a random number in location X (where X must be

defined as floating point in D.S, 1,):
RAND (;X),

The dummy input parameter Y is used simply because every

function must have at least one input parameter,

Appendix D is the current version of the NELIAC-N
Coding Sheet used by the programmer for writing NELIAC
programs for thz NAREC,

Appendix E is the current version of the NELIAC-N
Jperator Instruction Sheet filled out by thé programmer and
transmitted to the NAREC operating staff for compilation
(and possible run) of his NELIAC program on the NAREC,

NR#29,p.70

NAREC REFERENCE #29,p,71

COMPUTER SPACE LIMITATIONS

Although the NELIAC language itself places no limita-
tions on such features as number and size of flowcharts,
number of hames, number of undefined calls, length of
object program, etc,, the version of the language imple-
mented for a particular computer must, of course, be
limited by the space limitations of that computer's memory,
Most of the limitations such as names being uniquely
defined in their first 16 character, the limitations on
nested comparisons and strings of Boolean or and Boolean
and statements, etc,, which have already been described are
due to hardware limitations rather than NELIAC language
limitations, In addition, the NAREC imposes limitations on
the overall characteristics of NELIAC-N just as every com-

puter does to the version of NELIAC implemented on it,

NELIAC-N allows the compilation of up to 63 flowcharts
in a single sweep, However, there is an I0 Package and a
Library Package which are compiled individually as
separate flowcharts at the end of the programs requiring
them, Since either or both of these flowcharts may be
added to a program, the programmer's flowcharts may actually

be limited to 61 or 62, Thgse two package flowcharts will

NR#29,p.T

NAREC REFERENCE #29,p.72

be discussed in greater detail in the chapters devoted to
them, The fixed point, floating point, and subscript
packages are each compiled individually at the end of the
first flowchart requiring the particular package but as
parts of those flowcharts, Thus, they impose no such

limitation on the source program,

Immediately upon readin, the NELIAC-N flowchart is
converted to a symbol string containing, in order, the
NELIAC characters of the flowchart converted to an internal
code in which there is a one-to-one correspondence between
the NELIAC characters of the flowchart and the symbols of
the symbol string., In this symbol string, all spaces
external to names and numbers have been removed, successive
spaces within names and numbers have been reduced to single
spaces, and all ALGOL words have been eliminated, but
comments have been retained, The storage ares allocated
to this symbol string limits the length of the flowchart
when reduced to its symbol string to 5600 characters at the
present time, This normally allows from 5 - % flowchart

rages depending upon the character density of the pages,

NR#29,p.72

NAREC REFERENCE #29,p.73

In the event that this limitation is exceeded, the com-
puter will stop with a Flowchart Area Overflow fault
printout, However from many other standpoints - under-
standing, debugging, correcting, changing, combining,
etc,, of flowcharts, it is advisable to write flowcharts

of individual length far below this overall limitation,

The NELIAC-N compiler contains a list of 512 entries
in which all names, constants and masks used in logic and
I0 statement entries are recorded, Temporary names are
recorded in the list but are purged from the list at the
end of their flowchart thus making their space available
for reuse, Since, to date, no program including the com-
piler itself, has ever overflowed this list, it is con-
sidered more than adequate for any foreseeable program,
If the 1list is overflowed, a Name List Overflow fault

printout will result,

The NELIAC-N compiler contains a list of 300 locations
for recording the names, constants, and masks as yet unde-
fined, Since each location can record two entries for the

same name, number, or mask, 300-600 undefined calls are

NR#29, p.T3

NAREC REFERENCE #29,p.74

permitted at any one time, Whenever a name, number, or
mask is defined, all undefined calls for it are filled

in the object program and purged from this list thus
making available this space for reuse, Since constants
and masks are defined at the end of the flowcharts where
they are first used, they will be undefined throughout
the first flowchart where used but defined throughout

the remainder of the program, Since subscripting by name,
fixed point multiplication and division, and floating
point addition, subtraction, multiplication, and division
are performed through return jumps to subroutines in
packages compiled at the end of the flowcharts where
first required, these operations will set up undefined
calls in the first flowcharts where these operations are
used, Hence, this procedure provides another reason for
writing NELIAC programs in relatively short flowcharts,
In the event that this list is overflowed, an Undefined

Name Overflow fault printout will occur,

Finally, since the compiler itself, at the prescnt
time, occupies memory locations #0000 to #26FF in the
NAREC, this leaves the area #2700 to #3FFF available for

NR#29, p. Tl

NAREC REFERENCE #29,p,75

storagevot the resulting object program as the NELIAC
program is being compiled, Hence, normal compilation allows
for object programs up to #1900 or 6400 locations, How-
ever,''reset the bias' and '"low standard bias'' features
allow the compilation of larger programs (such as the
compiler itself which occupies 9984 locations) in a single
sweep. lIn addition, by suitable use of absolute addressing,
a progrim may be compiled in two or more sweeps., If the
resultiﬁg object program ever exceeds the area available
for itslstorage, the NAREC will stop with a #4000 42 in the

control register,

NR#29,p.75

NAREC REFERENCE #29,p.76

X, PARTIAL LOCATION OPERANDS (BIT HANDLING)

Up to this section all storage variables have been
discussed in terms of a full 48 bit word or memory location
per variable, In this section we shall see that any con-
tinuous portion of a memory location (i,e., only selected
bits) can be defined as a fixed point integer variable,
and that in the program logic, any continuous portion of a
variable can be manipulated quite easily without disturbing
the rest of the bits* of the memory location to which the
variable is defined,

*NOTE: Conventionally, the term bit is the name given to
each of the 48 flip-flops which, together comprise a NAREC
memory location, This name is derived from Binary Djgit

because it can contain either of the values O or 1,

NR#29,p.76

NAREC REFERENCE #29,p.77

It will be convenient to use the following bit number

assignments:
any 48 bit b 46 . . W ese ! O bit number
memory
location
most least
& significant significant =
bits bits

PART VARIABLE OPERANDS

The reader is already familiar with the procedure for
defining a full 48 bit fixed point integer variable
(Chapter II), If the programmer wishes to manipulate only
selected bits of such a variable he specifies the name of
the variable, and indicates which group of bits of that
variable he wishes to treat as a positive fixed point
integer* by writing the first (lowest bit number) and last
(highest) bit number using parentheses and the right arrow

as illustrated:

A (0 »14)

*The integer is necessarily positive only when referring to

44 bits or less,

NR#29,p.77

NAREC REFERENCE #29,p,78

In this example only bits O through 14 of the variable
A are referenced, To call for a single bit, say the least

significant, or bit zero, one would write:
A (0 »0)

If the variable is part of a table of variables and
requires a subscript for its reference, the subscript

notation (the brackets) is written first; i.e,,
A [I] (6 » 32)

It’should be noted that the values of part variable
operands.of less than 45 bits are treated as positive fixed
point iﬁtegers whereas full 48 bit variables may contain
either pbsitive or negative integers, In the case of part
words of'45 to 48 bits, whether the part word is con-
sidered positive or negative depends on the setting of the
sign bit'- bit 44 in the NAREC - after the part word is
downshiffed so it begins at bit 0, For example, supposed

variable.A contains the following array of bits:

47 7 6 5 4 3 2 1 0

AOO......,.O]‘O.'O]T

NR#29,p.78

NAREC REFERENCE #29,p.79

one inne&iately recognizes this as the integer +6b (hexa-
decimal)lor +107 (decimal), However, the 4 bit operand
A(2+5) which contains the binary array 1010 is considered
to contain the number a (hexadecimal) or 10 (decimal),

In other words, if one were to write the following

program (assuming A is defined as above):
sA (2+5) = #a: I +) » I;; STOP,

the result would be that the program would add 1 to I, Of

course, an equivalent statement would be:
sA (295) =10 : I + 1 » I;; STOP,

from which the compiler would generate the same program,
It is worth reiterating that even though the uppermost bit
of A(2»5) (bit 5 of variable A) is a] the partial operand
is not considered to be a negative integer, The only
possibility of the partial operand being considered a
negative integer in NELIAC-N is if it contains more than
4y bits,

All arithmetic operations previously described for
fixed point operands are legal with part variable operands,

However, the responsibility of arranging adequate storage

NR#29, p. 79

NAREC REFERENCE #29,p.80

capability is left to the programmer, For example:

Legally, the programmer may write:
»TABLE[I](19+25) * A(3+6) - Z(1-5),

However, the programmer should realize that a 7 bit operand
times a 4 bit operand may require as many as 11 bits to
store the answer, In the above case, only the lower 5 bits
of the answer would be stored into 2(1>5), and the upper 6
bits would be lost.

The index registers, I, J, K, L, M and N, automatically
dimensioned by the compiler may be bit-handled exactly the
same as any noun dimensioned in a dimensioning statement,

Thus:

,1>T (13 » 18),
,Z (11 > 46) > K,
M (5 >10)/2 > L (24 » 31),

Ng#egi P.BO

NAREC REFERENCE #29,p.8!

Further operations with part variable operands are

illustrated below:

,A(25»34) -» B,

,A(39>47) + B(0+14) » C,

JA(1224) < B(2+14) : TRUE ; FALSE ;
,A[1](30+36) -» B[J](31+35) » C[K](0->14),
JA(44->44) = 0; TRUE ; FALSE ;

PART LOCATION VARIABLES

The above discussion shows how any portion of a
variable may be manipulated without disturbing the rest of
the bits of the variable, It is possible, and often much
more convenient, to define a variable as certain bits of
another variable., Since they reference only part of a 48

bit memory location, they are called PART LOCATION VARIABLES,

and are considered to be variables, themselves, Part loca-
tion variables are always defined as certain bits of a
variable which itself is defined as an ordinary full loca-
tion variable (although this variable need not be explicitly
named and dimensioned), For example, if X is to be bits 39
to 47 of variable A, one would define this in the dimension-

ing statement, along with the definition of A, as follows:

A: | X(39 » 47) |,

NR#29,p .81

NAREC REFERENCE #29,p.82

In the program logic which follows, the operands A(39-47)
and X would be indistinguishable, and all the rules for
part variable operands described in the previous section
would apply to the part location variable X, OJbviously,
the main advantage in using part location variables is to
pack a number of variables whose rangeg>f values are small
into the same memory location. An illustration of a
typical use of a table of packed part location variables

follows:

Suppose we wish to store data on 100 aircraft, Items
we wish to store are:

X coordinate (5 bits)

Y coordinate ('5 bits)

height i1n 000 ft, units (6 bits)

status (3 bits)

identity (3 bits)

track number (6 bits)

This data can be packed into 100 48.bit words of NAREKC
memory as follows: In the dimensioning statement one waoula
write:

AIRCRAFT: .X(0-> 4), Y(15-29),

HT(30-35), STAT(36-33). ID(39-41),
TN(u2->47) { (700),

NR#29, p.B2

NAREC REFERENCE #29,p.83

Note that the initial value of all of these variables
is zero, 8o far, there is no convenient way to set all part
location varisbles to desired initial values since only
entire words may be assigned non-zero initial values,

Hence, in order to dimension initial values for this table,
X, Y, HT, STAT, ID, and TN would have to be combined into
the full word AIRCRAFT for each entry in the table. Then,
of course, the initial values will be assigned in the normal
manner for tables, An alternate solution would be to use
constants in the first part of the program logic; 1i.e,,

3052+X[0], 20 425-Y[0], etc...

Note also that each of the part location entries in
the table AIRCRAFT: X, Y, HT, STAT, ID, and TN, are tables
of 100 variables, Thus to reference the X coordinate of
the 10th aircraft one would write X[9) (or equivalently
AIRCRAFT [9](0~14)),

Before leaving this example, it is well to illustrate
a technique that often makes the program logic easier to
read, Suppose the programmer wishes to distinguish be-
tween 4 identities, FRIENDLY, HOSTILE, FAKER, UNKNOWN,

The programmer might arbitrarily assign values 0, 1, 2,

NR#29, p.83

NAREC REFERENCE #29,p.84

and 3, for these 4 identities respectively, and then in the
program logic, if the program wishes to find out if a
certain track has identity of FRIENDLY, the program might

read:
,ID[I] = 0: YES, NO,

However, a preferred method is to define variables
FRIENDLY = 0, HOSTILE = 1, etc., in the dimensioning

statement and then the same program could read:
,ID[I] = FRIENDLY : YES, NO,

Of course, not all bits of a full 48 bit variable need be
dimensioned, and several names may be given to the same
bits of a full variable, Part location variables of the

same full variable may overlap each other:

B: | C(0»12), D(0>12), E(12-29),
FQ12-u47) i,

Furthermore, the entire word need not be named zand defined:

{C(0+12), D(0+12), E(1229), F(12-47)},

NAREC REFERENCE #29,p.85
XI, OUTPUT STATEMENTS

The NELIAC-N compiler converts NELIAC output statements
into print programs that are compatible with the on-line
printer system or with the off-line NELIAC-N Flexowriter

(through the output punch),

In general, each NELIAC output statement controls the
printing of a single line of print of up to 72 characters
for the line printer or 86, 116, or 160 for the flexo-
writers, OJutput statements are also used to specify line

spacing, paging, and termination of output,

Two types of printed output control are required by
the programmer: <first, he must have the ability to specify
the format of the data he desires to have printed, and
second, he must have a method of printing literals; i.e.,
any words or symbols verbatim to serve as headings, labels,

or lines of text,

The information a programmer must supply pertaining
to his printed data consists, first, of specifications about

the data itself:

NR#29, p.85

NAREC REFERENCE #29,p.86

7. Which variables are involved and in what order are they
to be printed?

2. Are the numbers to be printed fixed point or floating
point variables, and, if fixed point, should they be
printed in hexadecimal or decimal notation?i

3. How many digits to the right of the decimal point are

required for floating point variables?

Secondly, indication as to the arrangement of such
data upon the printed page must be made:
1. How many spaces are needed hetween each piece of data
on a single line? |
2. Are blank lines needed}
3. Are new pages needed?

4, When is the output terminated?

NR#29, p.86

NAREC REFERENCE #29,p.87

PRINT VARIABLES

The term print variable will be used here to mean a
variable whose value is to be printed through the use of
an output statement, Only full 48 bit variables can be
used as print variables, The basic format of an output
statement as it is written within the program logic will
now be examined, In this section, only the contfol of print

variables; i,e,, data printout, will be considered.

The essential elements of a print statement are a
comma and a left brace, the names of the print variables
enclosed by the less than, greater than signs, and the
right brace indicating the completion of the statement,
Such an output statement will print one line only., Con-
sider the example below in which the two variables, refer-
enced by name as DATAl and DATAZ2, are printed on a single

line.
s IPRINT < DATAY | DATA2 > | ,

The word PRINT is merely a mnemonic device which may be

omitted, In fact, any words may be inserted here without

NR#29,p. 87

NAREC REFERENCE #29,p.88

harm although it is not customary to insert anything,
Spaces between data words are indicated by the absolute
sign |, the Boolean or sign '), and the Boolean and sign N,
The absolute sign indicates one space; the OR sign indi-
cates five spaces; the AND sign indicates no spaces,

Thus, three spaces are indicated by ||| and eleven spaces
may be indicated by a combination of the two symbols

w s luus or U | yUe A Boolean gnd sign N is necessary if

no spacing is required between print variables,

We see that the output statement serves only to
indicate the print variables, the spacing between printed
values, and, by its position in the program logic, when
the line is to be printed, All other control over the
printed message is indicated by the programmer in the
dimensioning statement, Thus, for each print variable,
the programmer must indicate in the dimensioning statement
the desired printed number format (scientific or fixed
point), the number system to be used (hexadecimal or
decimal), and the number of digits to be printed, (which
also controls the total number of print spaces used every

time the variable is printed),

NR#29,p.88

NAREC REFERENCE #29,p.89

The number of digits to be printed is the same as the
number of digits in the initial value (with the exception

of certain conventions); i.e.,
A = 50,

would specify two printed digits, The number of spaces
required would be three, iowever, as a Space 1s always
reserved for the sign of all print variables except for a

full 12 digit hexadecimal word,

B=#00:

specifies a printing of the sign, the hexi sign, and the
least two significant hexadecimal digits (after comple-
mentation if the word is negative) thus requiring four
print spaces, The sign of a value is actually printed only

if the value is negative,

Floating point print variables require an additional
space for a decimal point, and, in scientific (true float-

ing point) format, five additional spaces for an exponent,

NR#29, p.89

NAREC REFERENCE #29,p.90

Floating point print variables can be printed in either
scientific or true decimal point format, Scientific format
is always printed with a fraction part, X, where 1/10 ¢ X < 1,
and a signed power of lohexpressed 28 a plus or minus
integer in three digits, To indicate scientific format in
the dimensioning statement, an initial value is written

without a decimal point, For example, if A is defined as:
A = 0000 * O,

then if the floating point number 23,14 were stored in A

and printed, the resulting output would read as:
2314 ~002

and thus would use a total of 1) spaces on the printed

output page,

True decimal point format for floating point variables
is always printed with an appropriately plsced decimal
point, Thus if B is defined as:

B = 0000, * O,

then if B contains a floating point value of 269,733, the

NR#29, p.90

NAREC REFERENCE #29,p,91
printed result would read as:

270,

P

In all cases the decimal point is printed,

All values printed from a table of variables will be
printed with the same format control, This control will be
determined by the last specified initial value of the table;
e.g.; & table may be defined in the dimensioning statement

as:
A(3) = 295, 23, 48,

Since the last value in this table is 48, only two digits
have been specified for any print variable in the entire
table, Any output statement calling for the printing of
variable A (the first value of the table in this example,
295) will print only asterisks since the value of A is too
large for the dimensioned format of A, Hence, if the

program logic were to read:

s 1 <A D>},
the printed result would be:

* % *

ng) po 9.'

NAREC REFERENCE #29,p.92

It is good practice to format a variable larger than
the greatest expected value to allow for any miscalcula-
tion, Neither fixed point print variables nor floating
point print variables, when larger than the specified
format, will be printed, A row of asterisks is8 printed

instead of the number,

As another example, if a table is already defined in

the dimensioning statement as:

-

P MATRIX (9) = 13,21 *# 0, 2,32 * 0, 1,00 *# O
’-0098 * 0, 0.75 * 0
0,34 * 0

) L

-

L4 I

and if it is desired to print this table as it stands,
two zeroes should precede the decimal point of the last
value (00,34 # 0) to enable the printout of the first
values (13,21 # 0), The table may then be printed in the

following manner:

FOR J = 0(3)6 {, | < PMATRIX [J] |
PMATRIX [J+1] | PMATRIX [J+2] >} }

As an example, let us suppose a table has been for-

matted in the following manner:
TABLE (4) = 0000,00 *0,

NR#29, p.02

NAREC REFERENCE #29,p, 93

and floating point variables are computed and stored into
this formatted table, oJOutput statements may be enclosed
in loop control statements so that an instruction in the
program logic may read:

» FOR I = 0(1)3 |,y < TABLE [I] > | |
The table, printed out, may apbear as:

2,01
-14,32

'3075
36 355 22 3

The value of the last variable was too large for the

allotted format; i.e,, over the value 9999,99 after round-

off, therefore, the asterisks,:

More than one line of print may be specified., The
following example illustrates an output statement

indicating three lines of print, two variables per line,

NR#28,0:93 . ¢ .. . o

NAREC REFERENCE #29,p.94

On the next page, the foregoing discussion is
illustrated by indicating sample dimensioning statements,
the number contained in each print variable when the
output statements were operatad, and the resulting NELIAC

printouts,

ng’pcgu

NAREC REFEREICE #29,p.95

€00+ 2ulg’~
€00+ 121l8°
LO0+ 0000L° -
LOO+ 0000L°

‘0 #» 00000 = £P

29333333333
P33l
o0

‘% =9

€00+ 00000i2LLE°~

€00+ 000002 _L.n

‘O« 0 =11

2° ule-

12° e
00° L~
00° L

‘0 » 00°000 = 2O

31

€00+ 2ule°~ €00+ Le° -
€00+ 2Li€° €00+ Lg°
L00+ 000L°~ 0o+ OL°~
L00+ 000L* Loo+ oL°
200+ fr.e2° 00+ G2°

INOJUTIJ OVFION

2= » 1162 = HH 28 G =9

tjuemel vl g JujuoysuULNLQa
NOILVICN JDILILNIAIOS

"nnn *nn
s e
0°tL- _.l
0’

u_—ovn.n.um o.-._" TN

‘O % 0°0 = g8 ‘0% °0 = VvV

ijuswel vl g JUTUOTSUSHWIQ
INICA TVNIDEQ INUL
INICd ONILVOII
4 [oe- e

solze 200 »n

cen "0 e
INOCIVTId OBEION

‘of =3 ‘00000 =0 ‘00=8@8 ‘O=vV

tjueme3vyg SujuorsuUSEW(q
INICd QIXIZ

12° ue-
..m s
P-

Teoquny

12°ule- @
12°ue o

g

JequnyN

0~
s9L2¢e

Ioquny

NAREC REFERENCE #29,p.96

LITERALS

It is often necessary to print headings, labels, and
lines of text along with program results, The printing of
such literals is much the same as the printing of 6onputed
variables except that any information enclosed within

double less than, greater than signs is printed verbatim,
Example of literals:
si{<< THIS | IS | A | LINE | OF | TEXT > iy

All NELIAC-N characters except the absolute sign, the
Boolean or, the Boolean and, and the greater than sign can
be printed literally, Notice that the qhsglyig sign | and
Qr sign y are again the necessary symbols used to indicate
any spacing between words. Of course, text and variables
may be intermingled within a line of print as long as care
is taken to enclose the text material within the necessary
double signs, Consider the following example:

s} << MAXIMUM | VALUE | IS |
EQUAL | TO > | MAXG > |,

NR#29,p.96

NAREC REFERENCE #29,p,.97

The variable is MAXG and is, therefore, not enclosed
by the double print symbols while the literals MAXIMUM
VALUE IS EQUAL TO are surrounded by the double signs.,

Now suppose the variable must appear somewhere in the
middle of a line of text, The following format is

necessafy:
, [<<USING| >2Z< |MINES|AND|> X < |MINESWEEPERS)>)},

Z and X are the variables and are distinguished from the

literals by breaking the sense of the double print symbols,

Provisions are made to indicate the beginning of new
pages, blank lines, and completion of output, These are
indicated by the use of the following punctustion within a
print statement but external to either single (< >) or
double quotes (<< >>),

Start new page,

Insert blank line,
End of file,

® W we

A statement simply to Carriage Return and Top of Form

(at the present time, 8 additional CR's) would be:

s 1<,

NR#29, p.97

e,

NAREC REFERENCE #29,p.98

Commas indicate blank lines, A statement of four

blank lines is written as:

s 1< ks

In the following statement:
» {<<PROBLEM | NR >|X >,,},

the literals PROBLEM NR and the variable X are printed
followed by two blank lines, After all results are print.
ed (actually at any time outside quotes), an end of file
(ignored in line printer code, a stop code in punch or

flexowriter code) may be indicated,

A single line of print for line printer output should

never exceed 72 characters,

It must be remembered that the double period (,..,) is
reserved to indicate the end of the flowchart; and may
only be used for that purpose, Hence, it is impossible to
place successive periods within literals since they will
signify the end of the flowchart to the compiler, How-
ever, successive periods may be printed literally by

inserting ALGOL words between them, The ALGOL words will

NR#29,p.98

NAREC REFERENCE #29,p.99

prevent the compiler from detecting a double period signi-
fying the end of the flowchart, but they will be removed
from the 10 statement leaving only the successive periods
before the IO statement is compiled,
COMPLETE OUTPUT STATEMENTS

Although the three distinct modes of outputting -

page formatting, data printout, and literals - have been
discussed separately, the ability to mix them freely in
output statements is necessary before the programmer can
print out exactly what he wants to print out, For this
purpose, it is necessary not only to understand the details
of each individual type of output but to have an overall

picture of their usage.,

In general, an output statementj in the program logic
is enclosed by braces with the left orace being preceded by

a comma; namely,
s | IO STATEMENT |

It is necessary to think of the existence of three levels
within the output statement, these three levels corresponding

to the three modes of outputting discussed above, For

NR#29, p.99

NAREC REFERENCE #29,p.100

convenience, these three modes are called levels O, 1,

and 2, corresponding to page formatting, data printout, and
literals, respectively, Entrance to an output statement
through the ,{ is always at level 0, Within the output
statement each < raises the level by 7 while each >

lowers the level by 1, subject to the proviso that the
level can never fall below O nor rise above 2, Exit from
the output statement must be at level 0, Hence, in a

typical output statement, the levels would vary as shown:

» ’ eeee <Sg0ee¢ > eeee < oso0e > ecoe > < ¢00e < o400 >>oooo‘

o 2 1 2 1 o 1 2 0

It is immediately apparent that page formatting occurs at
level O, data printout at level 1, and literals at level 2,
with the appropriste rules as given on the preceding pages
applying at each level,

In order to properly arrange his output lines on the

page, the programmer need only keep in mind one simple rule:

Within the output statement, each time the level is
increased from 0, a2 new line of printout is started, all
oscillations between levels 1 and 2 merely change the type

of printout on this line, and when the level is decreased

ngb P. 100

NAREC REFERENCE #29,p,%07

again to level O, this line, followed by a carriage return,
will be printed., Hence, the above example calls for two

lines of printout,

The programmer who has a thorough knowledge of the
language used within the three modes of output, should be
able to output whatever he desires by simple application

of the above rule,

IO PACKA
NELIAC-N output is printed through return jumps to the

subroutines PRINTOUT, TOP OF FORM, DOWNL*NE, and END OF
FiLE contained in the LIBRARY PACKAGE which is automatic-
ally compiled as a separate flowchart at the end of any
program which has one or more output statements, Hence,

these five names should not be used by the programmer,

This chapter is ended with a sample progrsm and re-
sulting printed output in order to illustrate the rules
covering output statements discussed in this chapter. The
reader will observe that the result of this program was
used to generate the full-page output statement illustra-

tion ending the section on Print Variables.

NR#29) po) 01

NAREC REFERENCE #29,p,.102

5
OUTPUT EXANPLE,,,.
5
A =0, B=00, C= 00000, E=#0, ¥ = #00000, G = #,
AA = 0,%, BB = 0,0%0, CC = 000,00%0, GG = 25%2,
HH = 2314%.2, II = 0%0, JJ = 00000%0;
START: ,|<)>; << FIXED | POINT >>,| FIVE BLANK LINES,
492 +» A, PRINT 1, 32765 » A, PRINT 1, -30 - A, PRINT 1,
BLANK LINE, BLANK LINE,
[<< FLOATING | POINT >, << y TRUE | DECIMAL | POINT »>,|
FIVE BLANK LINES, 1,0 - AA, PRINT 2,
(COMMENTS: WHAT IS WRONG WITH THE STATEMENT:

1 -+ AA, PRINT 2,)
-1,0 + AA, PRINT 2, 371,21 -+ AA, PRINT 2,
=371.21 +» AA, PRINT 2, BLANK LINE, BLANK LINE,
<< y SCIENTIFIC | NOTATION >>,} FIVE BLANK LINES,
i< || 66 yl| BH >,} 1.0 + GG, PRINT 3, -1,0 + GG, PRINT 3,
3n.21 » GG, PRINT 3, -371,2) + GG, PRINT 3, STOP,
PRINT 1: A+ B+>C-+E-+>F =G,

<iiaw il Bullll Ryl 6>t
PRINT 2: |[AA+BB+CC, | <yAM iy || BBy || CCD> I,i
BLANK LINE: |, {<D}}
FIVE BLANK LINES: | FOR I = 1 (1) 5 {BLANK LINE}|
PRINT 3: |GG » HH » II » JJ,

I<il Gy |l BBy || ITy || 37 >H
STOP: ,| <D>; ofee

See
NR#29,p.102

NAREC nnmcn #29,p.103

€00+ 128"~
€00+ 13Ll€°
L00+ 0000L° =
100+ 0000L°

(dd

o8

FIFFIFEE
PIzL

€00+ 000001L2LL€° - €00+ 2ule’- 800+ Le° -
€00+ 00000L2LLE° goo+ 2Lle’ c0o0+ Le°
L00+ 000000000L" - LOO+ 000L° " LOO+ OL°~
L0O+ 000000000L° L0O+ 000L° L00+ OL°®
200+ fL€82° 7100+ G2°

oL

PE3LC
o8

NCILVICN JIJILNIIOS

12°us- *nen *ne
12° s PPeY PP
00° L= o°’tL- °L-
00° L o°t ‘t

INICd TVNIDIA INUL
INICE ONILVC'1A

e ot~ oe- e
*ne 69lL2e *ne e
*nn aeh] e

INICE QIXId

NR#29,p.103

NAREC REFERENCE #:29,p, 0Ou4

XIl, &UDRESSES OF NAMES

At times, it is convenient for a variable to have as
it initial velue the address (iocition} of another
vzrirble (or, in general, the ddress of any name), This
is handled in the dimensioning st:tement by following the
nzme of the vzrizble being dexined with an enuals sign and
o set of braces enclosing the nzme of the vzrizble whose
zddress is to be the stsa.ting value, Of course, the
virizble (or name) whose name is enclosed by the braces must

be defined elsewhere in the dimensioning statement or

rrogram,

Example: To define the varicble AUEC :ond give to it
28 1t3 initic) vi:lue the :1ddress of the nome ¢, the gimen-

sioning stztement must contsin:
AuRC C i .

A teble of cddresses may 2lso be defined in the

dimensioning statement, for exzmple:

JTABLE ~ { ¥, O, R, 5} ,

NR{’:Q- p. ' 0!‘

NAREC REFERENCE #29,p.i105

J TABLE {[0] contains the address of the routine P,
and successive locations contain the addresses of the

routines Q through S,

ABSOLUTE ADDRESSES

As discussed in Chapter II, the choice of address
assignment for a variable is normally left to the compiler,
However, one may choose the location of a variable in the

following manner:

A = |#3ac5} ,

As a result of this szssignment, the address of variable A
becomes #3ac5. JObviously, A may be treazted as a table con-
sisting of consecutive locations #3ac5, #3ac6, etc, The
number assigned as the address must be cither a decimal or

hexadecimal integer,

The mode of a varisble defined in this manner is deter-
mined by placing either a comma or a reriod sfter the right
brace, a comma assigning a fixed point mode to the variable
and a period assigning a floating point mode to the variable,
The variable A may be defined in the floating point mode

as follows:

A = 2#3&05*.

NR#29, p,105

NAFLEC RESLRENCE =.9,p. On

s>ince the compiler does not tike this assignment of
zbsoviute cddresses intn =ccount in the ccapilatien of the
rzst of tho .rogram. 1t shouid be used cniv for assigning
rddresses outside of the range i the comrailed obj)ect pro-
£rate, dn zadation 1t should nevar be usead for the assigh-

ment oI zbsoiut¢e audress zero.

Anuther Nt Al feature simiizr to the one just dis-
cus~ed, but apinlicable to th— @ .oogrvaw Logie rather than the
dimensioning statement, refers to the coantents of a var-
Ticuia address rether tnun the address itself, This is
.ccemu tashed by using & subsericst rlone without reference
to & nompad varliable, this ose of the subsceript in the rro-
gram lougic wiil then retfer directly tu the corresgonding
abs<iute address in the a2acry of tne computer i1tseif, Tns

folioving exampies should ciaritty this voint,

s _Yeu,e OO

NAREC REFERENCE #29,p.107

NELIAC STATEMENT ' NOTES

s [2] » A, The contents of memory location 2 is
stored into the variable A,

s [1I] » A, The contents of the memory location
vhose address is in I is stored into
the variable A,

s [B+ 10] = A, The contents of the memory location
vhose address is 10 greater than the
address that is in B is stored into the
variable A,

» A » [#75], " The value contained by the variable A
is stored into memory location #7b5.

s[BJ+[2] » [B+10]. The contents of the memory location
whose address is in B plus the contents
of memory location 2 is stored into the
cell whose address is 10 greater than
the address that is in B,

This form of absolute addressing is merely a degenera-
tive form of subscripting following logically from the
general form OPERAND [SUBSCRIPT ! number] where OPERAND is

suppressed,

It must be remembered that absolute addresses are
denoted by braces in the dimensioning statement and by
brackets in the program logic,

NR#29,p.107

NAREC REFERENCE #29,p.108

XIII, LIBRARY OF FUNCTIONS
In scientific computation, any but the simplest

problems usually require the ready availability of mathe-
matical functions such as the trigonometric, inverse
trigonometric, logarithmic, exponential, etc, functions,
NELIAC-N provides these functions through its Library of
Functions which, in April 1963, contains the following 14
functions:

ARCCOS
ARCSIN
ARCTAN
cos
FL TO FX
FX TO FL

 EXP

LN
LOG
SIN
SPLIT
SQRT
TAN
COMSIN

The function library, whenever one or more functions
are called in a program, will automatically be compiled as a
separate flowchart labelled LYBRARY PACKAGE at the end of
compilation just ss the 10 PACKAGE has been compiled, If
both packages are needed in a program, the two additional
flowcharts, L)YBRARY PACKAGE and 10 PACKAGE, will be compiled
in that order at the end of compilation,

NR#29,p.108

NAREC REFERENCE #29,p.109

The LIBRARY PACKAGE s1il1 contain only those functions
which are called in the program (and any additional functions
which may be called by these functions) and not the entire
function library (unless all of the library functioﬁs are
called on), Hence, the length of the LI1BRARY PACKAGE in
any program will be'the same length as if only the functions
needed had been read in directlv from tape.

The library function names are not forbidden names,
These names may be defined and used in any program, Any
library function name which is defined in a program will be
used as that definition, However, if a library function
name is used but not defined prior to end of compilation,
this function will be compiled from the library at the end
of compilation, The usual concept of temporary or local
names is applicable here; namely, if a 1library function name
is defined locally within a flowchart, that definition will
be used within that flowchart but calls for that name out-

side that flowchart will be filled from the function library,

All functions (except FX TO FL and FL TO FX) are
floating point functions, The entry in all cases is
, FUNCTION (A;B), except for SPLIT which is ,SPLIT (A;B,C),.

ng’ po..og

NAREC REFERENCE #29,p.110

All arguments are floating point except the imput argument
to FX TO FL and the ocutput argument to FLTO FX, FXTO IL
converts a fixed point argument to its corresponding float-
ing point value while FL TO FX converts a floating point
argument to its corresponding rounded fixed point value,
SPLIT converts a3 floating point argument into its integral
and fractional parts (the output arguments appearing in
that order), CJOMSIN is a function used by SIN, COS8, and
TAN for their actual cosputations although it may be used
directly by the programmer. The input parsmeters of the
trigonometric functions and the output parameters of the
inverse trigonometric functions are in radians, and the
latter are the priné:l.pal values of the particular functions,
The uses of 311 other functions should be evident from

their names,

Other functions will be added to the NELIAC-N library

as the demand for them arises,

As an example (much more complicated than the usual
case) of the use of the library, suppose that it is re-
quired to calcuiate the value Y where

Y= \funz (eax ~ CO8 X) + 1n (22 + 3) + 16,74

ng’ po" 10

NAREC REFERENCE #29,p.111

Dimensioning TS and TS 1 as temporary floating point work-
ing locations, a solution using the Library of Functioms, is

»2.0 *# X > TS, EXP (TS; TS),

COS (X; TS 1), TS - TS 1 » TS,

SIN (TS; TS), TS * TS - TS,
Z2*%*Z+3,0->T817, LN (TS 1; TS 1),
TS + TS 1 » TS, SQRT (TS; TS),

TS + 16.74 » ¥,

The general exponential X = AP, where A and B are any
calculsble expressions, can be solved since AC = e * 12 A;

and, therefore,
JLN (A; TS), B#*# LN A > TS, EXP (TS; X),
would yield the NELIAC-N solution,

LIBRARY PACKAGE

Although 1library function names are not forbidden names,
it is good practice to avoid—hsing them except as library
calls since their use for other purposes may complicate
understanding of the program and may interfere with its
integration with other flowcharts or programs., The usage of
these names is further complicated by the fact that some

1ibrary functions themselves call other library functions,

NR#29: P.‘ LR

NAREC REFERENC 5:9..,

Hence, when the programmer uses a i idr+irv functism nsme oy
some other nurnose, trouble a.v resglt ovin tanuzn by A038
not ¢z}l that particuizr .ibrafy runclaion 3inCe sSMée ibrary
function he does call v 4o s, furthorsore, tac nate of
the function library i BuAlin CAUKACY ~nauld not bz defined
Zlobally, At the tresent tige, the Libhrarv Kawes »1th the

other library functions they c¢3li indicate benzath them are:

1. BRARY PACKAGL
ARCCJS '
ARCTAN
SQRT
ARCSIN
ARCTAN
s et
ARCTAN
Cos
CONS:N
SPLIT
Fi. TO FZ
FX TO Fi.
4y
SFELIT
LN
1.2G
LN .
SIN
CoIs N
SPLIT
SPLIT
SQFT
TAN
Cos
SIN
CMSN

NR#-9, o,

NAREC REFERENCE #29,p.113

Note that several of the functions call on other
functions which in turn themselves call on still other
functions thus further complicating the difficulties
which may arise from the indiscriminate use of library

ng’ 90113

- NAREC REFERENCE #29,p,: it

X1V, MACHINE tANGUAGE CuirING

The NiLIAC comptiier provides for the insertion of
actual machine lsneuage instructions between conventional
NLLIAC stztements by means 1 mzchine language coding slso
known as 'crutch coding® ., Fucih instruction ccnsasts of an
address -- either an unsigned decimal or hexsGecimal
integer or s name (which siy be subscripted 1nc1udihg the
wbsolute zddress notatinn, but which may not be bit-
handied?!, followed by *he¢ hexi sign and a two digit hexs.
decim=i order (z2ctusiiv. ..y unsigned one or two digit
hexrdecimal pumber ., F:ch such instruction 1s considerea
2 statement and mu<t be sexsarsted by commas (or their

erquivalent),

IN> s RULT [ON NITy~

» i Flagc0, 1:08d accumulator with coantents of
locetion # £7a,

L0 #54, Add contents of location O,

s 1 + 2000 %4, Itore result in sadress #:000 clus
contents of index register (1},

NE=-9,n, ‘4

NAREC REFERENCE #29,p.115

Names of locations containing variables may be

referenced as well as actual addresses,

INSTRUCTION NOTES
, NUMBER #50, Load accumulator with contents of
location referenced by the name
NUMBER,
,ALPHA #54, Add contents of location referenced
by ALPHA,

,RESULT [I] #42, Store accumulator in location
referenced by RESULT augmented by
index register 1(1I),
Constants may appear as address portions of many
instructions, If a constant is to be treated as a hexa-

decimal integer, a hexi sign -mpt precede the number,

Any statement may be labeled by the familiar method of
punctuation, unique name, colon, This causes the next
19;truction to be compiled into a left (upper) half-word
posiéﬂ%m with an appropriate right (lower) half-word pass
instruction being compiled into the preceding program step
it neéellary. Note in the example, the conditional jump in
the statement to the instruction tagged as ROUTINE,

m g’llbogu‘}ofiiool#‘jo, (K+71#55,
[LOCATION -2; #42, ROUTINE #12,
ROUTINE: LOCATION 4 3" ¥ ooose0,

NR#29,p.115

NAREC REFERENCE #29,p.116

There is a one-to-one correspondence between NELIAC
machine-language instructions and the actual machine-lang-
uage instructions in the resulting object program (allow-
ing for ''passes' caused by verbal definitions) except in
the case of any instruction whose address portion contains

subscripting by name,

In the pure NELIAC language, the programmer need not
concern himself with the contents of the computer registers
since he has no direct access to them., The compiler itself
keeps track of the registers it uses thereby preventing
difficulties from arising in the compiled object program due
to erroneous use of the registers, However, in machine
language coding, the programmer now has direct access to the
NAREC registers; and, therefore, he must be careful to keep
track of their contents himself, In order to be able to
successfully keep track of the A and U registers of the
NAREC during machine language coding, he must realize which
NELIAC-N gtatements may destroy the register contents and
avoid using any of these NELIAC statements at a time when he
is interested in the contents of a NAREC register. These
NELIAC-N statements include:

NWQ’ 9.1 'I 6

)
(2)
(3)
4)
(5)

(6)

N

NAREC REFERENCE #29,p.117

subroutine and function calls;

subscripting by name (destroys U register only);
the entry or recycle test in loop control
(destroys A register only);

comparison statements (but not the alternatives
themselves);

output statements;

partial word or bit handling (whether explicitly
in the program logic or through dimensioned
partial words);

NELIAC arithmetic statements,

Examples of illegal machine language coding are:

(COMMENT: ILLEGAL USE OF REGISTERS
IN MACHINE LANGUAGE CODING.)

NOUN
NAME [J
LIST

O #50, 1
CONST
AB #24,

, SUBROUTINE, HOLD #42,
#l, o

STORE fg? #43
= 0(1)6 {6430, 090}

s, A = B: Cfii2; D#42; E-F,
< C >}, DE #l&3,

W (5-'10) #24,
A#0, B-C~+>D, E #hz,

NB#29,p.117

NAREC REFERENCE #29,p.118

The programmer must be particularly careful to precede
the order by a hexi sign in all cases. #3000#10, not
#300010, compiles as an unconditional transfer to the
left instruction of location #3000, #300010, will give

a compiler fault,

NR#29,p.118

NAREC REFERENCE #29,p,119

XV, _PARALLEL NAMES

NELIAC-N provides for the parallel definition of all
forms of names which may be defined either in the dimen-
sioning statement or in the program logic, This means that
whenever a name is defined, any number of additionai names
may be defined to have the same meaning; all of the names
being completely interchangeable in their use., In all
cases, except in tﬁe definition of partial words which in-
herently contains its own means of parallel definitionms,
names are defined in parallel to the initial name by simply
inserting immediately after it a colon and the second name,
This process of ''colon name' may be repeated indefinitely,
thereby defining any number of names in parallel, What-
ever would have followed the single name now follows the
last 'colon name' in the parallel definition, Examples in

the dimensioning statement

A:B:C,
D:E:F: G,

Al : A2 = 57,185,
Bl : B2 : B3 (20).

NR#29,p.119

NAREC REFERENCE #29,p.720

Examples of parallel definitions in the program logic

are:

oCALCULATION : REENTRY : A + B> C,.,..
sSUBR : SUBR) : |0 » D ~ E > Fj

Since any number and arrangement of partial words may
be defined in parallel, the definition of identical partial
words in parallel is merely the special case where both bit

designations of two or more partial words are identical;

€.8e»
oA : B |C (5°7), D(5>7), E(6218)],

In this case, the names C and D are interchangeable through-

out the program,

In any parallel definition, any name or names may be
temporized independently of the other names in the parallel

definition,

NR#29,p.120

NAREC REFERENCE #29,p.121

XVI. DIAGNOSTICS AND DUMPS

An effective aid for program checkout is provided by
the NELIAC~-N diagnostics and dumps. As anAillustration,
the following (nonsense) NELIAC program was compiled. The
RUN INFORMATION which is automatically furnished at the
end of compilation, the alphabetically sorted NAME LIST
DUMP, and the OBJECT PROGRAM DUMP, either or both of the
latter being optional with the compilation, were printed

out. The result is also shown below.

NR#29,p.121 R

R

NAREC REFERENCE #29,p.128

5
NELIAC PROGRAM,,..

5
X(SO) = u.b*o, "29.7’0’ 48.95‘7*1, 2.0*.1’
NUMBER OF ENTRIES - 4, T = 0%0, a, B, C,
TAB: (.X(:-7), YY(20-46)] (100), Z%;
START: A+ B-+C, 0T -+ N, ,
FOi I = 0(') NUMBER OF ENTRIES -) JX[I] * X{I] + T - T}
98.7 v« T ¢ X [2]:

SToP,

N+Y =» N:
XK * 22 (5210) - YY,
STok: ,,
See

NEL LACPROGRAM

NR ROUTINL NAME FIRST VAST
o START 2700 28b7

NELIACPROGRAM
NAME LIST DUMY

A 274t
B 2750
C 2751
D: VI DE 2820
F'ADD 2716
F1DiV =821
FMUL 280€
F'SUB : 27fe
I 270"
J 70‘1
K 9703
L c'?oll
| 2705
MULTI PLY , 2898
N 2706
NUIBEROFENTRIES 274d
START 27b
STOP 274
SUBSCR'P 27e0
T 2Tue
TAB 2752
X 27'b
XX ‘ 2752 0107
Y 2752 2046
2z ' 27b6

NR#29,p.122

e e s i 1L omeny e At st s s S <ot

e S

e .
.

‘wa«., ,
TR 4 1> P i 7 g 3
.

e s e i e A Y T ARG
-

NELIACPROGRAM

OBJECT PROGRAM DUMP

2700

27'b
27 ¢
27id
27 e

274d

27b

27b

27b9
27ba
27bb
27Tbe
27bd
27be
27bf
27¢c0
27¢1
27c2
27c3
27Tch
27¢e5
27¢c6
27¢

27c

27¢9
27ca
27¢chb
27ce
27cd
27ce
27ct
2740
2741
27d2
27d3
27d4
27d5
27d6
27d

274

27b7

0839
£7a?
089f
O7ec

0000

2750
2751
2Tke
27dc
2701
2701
27df
27bf
27bt
2701
0000
2701
0000
274e
2T4e
27da
27¢e7
27cad
2707
2707
27cce
27cc
27df
2706
27b6
27de
2708
000"
2708
2749
2709
27db
2709
2700

10

00
26
4a
cc

00

50
42
42
50
50
42
55
12
il
00
50
00
24
24
42

42
39
50
26
43
26
54
82

2701

0000
6666
2815
ccee

0000

274t
27de
2706
27be
27df
274d

2701 i
27¢6 O

27e0
27'b
27e0

2406 |

2716

27bb *?

2T4e
27fe
2Tue
271d
27fe
27cd
2748
2706
27ct
0005
0000
2752
27dd
2808
0014
2752
0000
2752
2749

NAREC REFERENCE #29,p.'23

NR#29,p.123

27d9
27da
27db

27dd
zT7de
27df
27e0
27e?l
27ez
27e3
ZTel
27e5
27e6
27e

27e

27e9
27ea

27ec

2715
2716
i s 4
27¢
2719
27fa
271fb
271c
2712d
27fe
271¢%

2801
2802
2803
2804
2805
=806
280

280

2809
280a
280b
280c¢
280d
280e

0000
087¢
8000

0000
0000
0000
0000
0000
27e5
27e9
0000
0000
0000
0000
00z0
0000
0000

27e0

offsf
27et
0000
2718
278
z27f¢
2713
27df
27fd
27ef
0000
2800
s 4
2804
2713
27de
2805
cTef
0000
2808
27ef
Z27ef
000
2715
27ef
280f

07
56
00

00

00
34
Ly
20
22
50
24
4o
54
34
20
10

4
42
44
kR
50

42
50

42
i

Vi

50

50
Vi
he
44
T
50

2
30
26
50

NanelC KuFERENCE #29,p, i 24

NR#29,p.124

T KO 1 e AR N

TN

280¢
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
281a
28tb
28ic
28vd
281e
281 ¢
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
282a
282b
282¢
282d
282e
282¢
2830
2831
2832
2833
2834
2835
2836
283

283

2839
283a
283b
283c
283d
283e
2831

gef 50

27et 50
27et 42
2T7ed 50
2Ted 42
27ee 50
280e 55

2819 12
2819 11
2ged 50
1d
2Tef 42
2Ted 50
2Tet 54
2711 50
2821 18
27de 50
def 42
3
27ef 42
0000 44
2826 11
270 50
2T7£0 42
000! 30
2715 26
27ef 50
282d 12
27ef 50
27ef 42
Qged 54
2833
27et 50
2Tef 42
2T7ed 50
27ee 55
288d 55
2837 12
2837 11
27ed 50
283b 12
27et U2
2T7ed 50
27et 54
271 50
283f 18
27de 50

288¢
28131
0001
2815
274¢
2815
27ed
2Ted
2818
28la
2889
27de
27de
2888
002&
27et

73
27et

2823
2710

2842
0008
2Tef
2710
27ef
286b
2831
0002
2741
zged

2833
88e

2

27ed
5436
2838
2889
27de
2gdc
2888
0024
27et
2712
2841
2Tet

55

31
10
25

54
42

10

10
55

NAREC REFERENCE #29,p,.V25

NR#29,p.125

2844

=860
2861
2862
2863

2865
2866
286
286
2869

‘286b
286¢

286d

286e
286t

2Tet
281
0000
27ef
2848
“iE
et
by
o
Tt

=

R S

H-G - o i

o
L]

“9.
r.d
ey

Oa()

1
IAREYN

: 19 ¢
LIV O I
od

S £
e

R

NI -]
11040
R

‘ee

STge Y

00 0
et
00u0
A 3¢
et
Lmee
E2aTa!
“Tef
c7ef

ZTed S
Rl I

28of
286 ¢

Soh
Biwlels]
LS?&

,dc .

- dI

Crew
0Pt
CTet
28Rt
=710
0000
a?ee
de
-B€O
000
; IIO
7f0
aBFO
sTed
+7f4
286y
564

27de

0
0

NAREC REFERENCE #:9,0,'z58

NR#20,p, B3

2870
287!
"57&
—873
=874
=875
2876
/877
=878
2879
:87a
287b
5870
287d
-87e
287f
2840
B8«
288¢
cBH3
=884
8865
=886
<887
<888
=889
~B88a
288b
=88c¢
288d
~BBe
~88¢f
u890
-89
&693
=893

2898
~+99
z89a
©F9b
<89c¢
~H9d
~B9e
»59f

188/
“ef
r673
K/ef
(ef
5876

~87a

=710
et
u?f’\
=Tef

=87fF

27df
27et
et

/]ef
"Vbd
7ef

2 8RG
_7dc
27ef
Z7ef
e
~Ted
00-0
001:0
0000
0000
000f
0008
0000
£000
Offf

~894
0000
<894
+89e
~893

=89z 5

0000
0000

50

5 _‘:~—-

S

QO LN Sy — g T
RO N =R~ Ko X = I M e TL B

NAREC REFERENCE #:29,1v,125b

2804 42
002¢c Ak

28s5 13
28b6 10
2805 24
2893 50
2803 5
2804 52
2805 gg
0000
2006 22
2804 50
2

28ac 12
2806 55
2804 50
o o
2807
2897 43
2 10
0000 10
2802 82

2805 43

2804 50

288 1
aasZ b2
28e4 42
2895 42
2886 42

2885 55
28a) 50
2803 70
2805 13
2807 3})

Es
of

NAREC REFERENCE #29,p,.125¢

w29, p.125¢

NAREC REFERENCE #29,p.%26

The object program dump illustrated is a non-reloadable
dump for information only., NELIAC-N furnishes two reload-
able dumps - a bioctal dump and a standard NAREC dump,
Inasmuch as the bioctal dump is approximately 40 percent as
long as the NAREC dump, is comparison-loaded for correctness
as soon as it is punched out, and, on readin, automatically
sets its own first and last addresses and check sums itself,
it is the preferred reloadable dump, In addition NELIAC-N
provides for the non-reloadable dumping, in the hexadecimal
format of the object program dump, of any sections of memory

specified by the programmer,

In the illustration just furnished, there were no
compiler-detected faults, In the event there are any com-
piler faults, these will be printed out as detected during
compilation, The next example gives the printout of the

compilation of a program containing a number of errors,

NR#29,p.126

NAREC REFERENCE #29,p.127

NEL JACPROGRAM IOW

01 INPUT/OUTPUT FAULT >
| SQUARED| = |C, | ARE: >3, <<| | | Aus| | | BLCD, >, | 1=0(1)9{A[1]>BUFFER 3, B[1]+BUFF!

02 DIMENSIONING ERROR) TS (
0)=-16,,,57,-118,,16,4,-7,C(1 0)TS(2) ;NELIAC CLASS PROGRAM:SUM 100 INTEGI
02 SUBSCRIPT FAULT INTEGERSQUARED

D SUM,K=1(1)100] INTEGER SQUARED[K-")+INTEGER SQUARED SUM-+INTEGER SQUAREI

02 CO/OPERAND/NO FAULT { QUARED +
D SUM,K=1(1)100{ INTEGER SQUARED{K-1)+INTEGER SQUARED SUM-INTEGER SQUAREI

02 FUNCTION FAULT SUBSCR) P (
OF TABLE:L=9(~1)0|SQUARE FUNCTION(A[L] TS),SQUARE FUNCTION(B[L]};TS[1]),

02 CO/OPERAND/NO FAULT
E:L=9(~))0|SQUARE FUNCTION(A[L]: TS) SQUARE FUNCTION(B[L] TS[1]),T8+TS(1]

02 CO/OPERAND/NO FAULT)
E:L=8(-1)0|SQUARE FUNCTION(A[L]:TS),SQUARE FUNCTION(BIL];TS[1]),Ts+15(1)

02 FUNCTION FAULT A]
TS),SQUARE FUNCTION(B[L];TS[1]), TS+TS('I]-DC[L]IEXIT SQUARE FUNCTION(INTEG

02 UNCLOSED SUBROUTINE « 100 A9
INTEGER* INTEGER-INTEGER SQ E|XT:,, H .YZT)U{ 9DA[P],#.[+*2<3Dy
NR ROUTINE NAME FIRST LAST
0 IOSTATEMENT 2700 25:3
b

02 NELIACCLASSPRUGR 2£eb

03 IOPACKAGE 2¢19

UNDEFINED NAME LIST DUMP

BUFER6 2cla
EXIT 2¢)b
o 2¢lc
BUFFER3BUFFER3 2cid
LOO 2cle

NR#29: p.127

NAREC REFERENCE #29,p.128

Following the Program Name, there occur, in order,
three different types of diagnostics, First occurs the
faults in the order of detection with detailed information
about each fault detected being printed out in a two-line
entry, Tﬁe first line gives, in order, the flowchart
number, the type of fault, the current operator, the
operand, and the next operator, all at the time of detec-
tion of the fault, The second line gives the 72 successive
characters in the symbol string in memory, centered on the
point where the compiler is compiling at the detection of
the fault, This enables the programmer to quickly locate
the pertinent point in his program and tells him exactly
what is actually in the computer memory at this point,

Next occurs the Run Information which gives the same infor-
mation as for an error-free compilation, Finally, there
may be an Undefined Name List. This Dump lists all names
which remain undefined at the 2nd of compilation and the
locations which the compiler has assigned them at the end

of the progranm,

The NELIAC-N compiler has a provision for loading a

single flowchart without its compilation,

NR#29,p,.128

NAREC REFERENCE #29,p.129

The NELIAC-N compiler also contains a SYMBOL STRING
DUNP which will print out the actual symbol string formed
in the NAREC memory from any flowchart, This is frequently
of use in isolating the cause of an apparent contradiction
between a flowchart and the compilation resulting from it,
This symbol string dump may be used in dumping the NELIAC
program during its regular compilation or it may be used

with the single flowchart load without compilation provision,

NR#29, p.129

NAREC REFERENCE #29,p.130

APPENDIX A

Summary of the NELIAC operator symbols

A,

Punctuation

..

Comma: In general, a comma is used to
separate names and numbers in the dimen-
sioning statement and to separate state-
ments that are to be performed consecu-
tively in the program logic, In a one
name statement, a commes indicates a reo.
turn jump to a subroutine, The comma is
also used to sepsarate the parameters i«

g function c¢rll,

Colon: ‘The colon has five basic meanings,
In the dimensioning stsiement «¢ 18 Useq
when defining « wartial word, with the
name of that entire word preceding the
colon and a left brace following the name,
Using the colon after a name preceded by
punctuation defines that which follows as
the subroutine or the routine associated

with that name, except for parallel names,

NR#29,p.130

e

NAREC REFERENCE #.9.p,.'3"

Using a colon with any comparison symbol
separates the statement of the comparison
from the true alternative., The colon is
also used in the definition of a function
and is also used to define parallel names
in both the dimensioning statement and

the program .ogic.

Semicolon: Jhe semicolon is used to separ-
ate the dimensioning statement from the
flowchurt logic, The semicolon can also be
used to end the true or false alternative
of a comparison, In a function call, a
semicolon separates the input parameters
from the output parameters,

Period: A period is used at the end of a
sequence, when control is transferred to
another part of the program as specified
by the word immediately preceding the
period, This same symbol is used as a
decimal point in numbers and to define

floating-point working locations,

NR#29,p.13}

NAREC REFERENCE #29,p.!32

.o Double period: A double period indicates
the end of the flowchart logic, and, con-

sequently, the end of the flowchart,

B, Arit t

+ Plus sign

- Minus sign

* Multiplication sign

/ Division sign

1 Exponent sign or Up arrow: Indicates an

exponential operstion, The number to the
right of the symbol expresses the power

to which the base is to be raised., At
present only the base 2 (arithmetic shift)

or no base ‘logical shift) may be used,

C. S ols
= Equal: Also used in the dimensioning

statement and in loop control,

Not equal

< Less than

> Greater than

€ Less than or equal to

ps egter than u to

NR#29,p.132

D,

Miscellaneous

()

(]

NAREC REFERENCE #29,p.i33

Parentheses: In the dimensioning state.

ment, parentheses indicate the number of
variables in a table., In both dimension-
ing statement and program logic, paren-
theses enclose bit specifications for
operating with partial location operands,
In the definition or call of a function,
parentheses enclose the parameters to be
used, Parentheses also enclosc comments
when used with the colon, They also
enclose loop increments and decrements and
furnish algebraic grouping in the program

logic,

Brackets: Brackets are used for sub-

scripting. The numeral or index enclosed
by brackets augments the name preceding.

If no name precedes the brackets, the three
gquantities together are treated as an

operand,

NR#29,p.133

NAREC REFERENCE #29,p,%34

Braces: In the dimensioning statement,
braces enclose the name whose address is
to be the initial value of the name pre-
ceding the braces, or enclose the number
wvhich is to be the absolute address of the
name preceding the braces, They also
enclose definitions of part location
variables, In the program logic, braces
indicate loops, and enclose subroutines,
functions, and output statements,

Right Arrow: Indicates that the result of
the preceding operation is to be stored
into the name following the arrow, Also
used to help specify bit operands,

Absolute Sign: Used to purge names, used

in output statements to indicate cne svace,
and used to indicate absolute values 1in
the program logic,

Boolean OR Sign: Used to separate parts
of a compound decision, Used in output

statements to indicate five spaces,

NR#29,p,134

NAREC REFERENCE #29,p,135

N Boolean AND Siggj Used to separate parts

of a compound decision, Used in output
statements to indicate no space,

<> Less Than, Greater Than Signs: Used in

output statements for printout of
variables,

<< M Double iess Than, Greater Than Signs: Used

in output statements for printout of
literals, Also used in the dimensioning

statement for literal definitions,

NR#QQ: p.135

NAREC REFERENCE #29,p.136
5
(COMMENTS: THIS FLOWCHART DATED 4 MARCH 1963
IS A DIMENSIONING STATEMENT ILLUSTRATING
THE VARIOUS FORMS OF NOUNS IN NELJIAC-N,)

A, B(6), C(#20), D =5, E = -5, F = #300, G = -#f3c,

H(3) =1, 2, 3, P(#20) =7, 6, 5, 4,

Q27 =, , 6, =8, #17, , 57, -#6,

R: S: T, U: V: W: X = =58, Y: Z: AA (50) = 16, -#27, , -8, #0,

AB: {AC (0-23), AD (24->47)} (26) = #1234 56 789a be, , 5,

{AE (0~0), AF (0-7), AG (8»23), AH (0+23), AI (24~31), AJ (32+47),
AK (24-47), AL (24-47), AM (24-U7), AN (626), AP (15+35)},

AQ: AR: AS: [AT (5210), AU (5»10), AV (7»14)},

AW = {#2000}, ADDR A = [A}, ADDR SWITCH = |A, B, C, D, E, Fj,

T|EMP, T|EMP 1: AX: {AY (5%10), T|EMP 2 (23+23)} (#0) = 57, -18,

FA, FB (6), FC (#20), FD = 5%0, FE = -5%0, FF = 278,,

FG = -768,00%0, FH (3) = 1.0, 2.0, 3.0,

FP (#20) = -12%0, -12,0, -12,, -1.2%1, -12000% -3, -12,0%0, -1,2%1,

FQ (27) = , , 6*0, -8.%0, 25,0, 5700%-2, , , -6.,

FR: FS: FT, FU: FV: FW: FX = -58.,0,

FY: FZ: FAA (50) = 16,0, -39%, , -8., 16.0,

FAW = {#3000}, ADDR FA = |[FAj},

FADDR SWITCH = {FA, FB, FC, FD, FE, FFj},

F|TEMP, F|TEMP 1: FAX (#0) = 57,0, -18,0;

NO LOGIC: ..
NB#2939-136

NAREC REFERENCE #29,p,136
5
(COMMENTS: THIS FLOWCHART DATED 4 MARCH 1963
IS A DIMENSIONING STATEMENT ILLUSTRATING
THE VARIOUS FORMS OF NOUNS IN NELIAC-N,)

A, B(6), C(#20), D=5, E = -5, F = #300, G = -#f3c,

H(3) =1, 2, 3, P(#0) =7, 6, 5, 4,

Q7)) =, , 6, =8, #7, , 57, -#6,

R: 8: T, U: V: W: X =258, Y: Z: AA (50) = 16, -#7, , -8, #0,

AB: [AC (0-23), AD (24-47)} (26) = #1234 56 789a bec, , 5,

[AE (0-0), AF (0+7), AG (8+23), AH (0+23), AI (24-+31), AJ (32+47),
AK (24-47), AL (24>47), AM (24-U47), AN (6~6), AP (15+35)},

AQ: AR: AS: [AT (5+10), AU (5»10), AV (7+14)},

AW = {#2000}, ADDR A = [A}, ADDR SWITCH = {A, B, C, D, E, F},

T|EMP, T|EMP 1: AX: {AY (5%10), T|EMP 2 (23+23)} (#10) = 57, -18,

FA, FB (6). FC (#20), FD = 5%, FE = -5%0, FF = 278,,

FG = -768,00*%0, FH (3) = 1,0, 2,0, 3,0,

FP (#20) = -12%0, -12,0, -12,, -1.2%, -12000*% -3, -12.0%0, -1,2%,

FQ (27) = , , 6%0, -8.%0, 25,0, 5700%.2, , , -6,,

FR: FS: FT, FU: FV: FW: FX = -58,0,

FY: FZ: FAA (50) = 16,0, -39%0, , -8,, 16,0,

FAW = |#3000}, ADDR FA = [FAj},

FADDR SWITCH = {FA, FB, FC, FD, FE, FF},

F|TEMP, F|TEMP 1: FAX (#0) = 57,0, -18,0;

NO LOGIC: ..
NR#29,p.136

NAREC REFERENCE #29,p.137

APPENDIX C

NELIAC-N Forbidden Names

NELJIAC-N places the following restrictions on the pro-
grammer's otherwise unlimited choice of names which he may

define and use:

(1) The 5 ALGOL words

GO TO

DO

IF

IF NOT,

FOR
must never be used as names or parts of names. However, if
any of the spacing requirements are violated, the same
sequence of NELIAC characters is no longer considered as ap

ALGOL word and may be freely used,

(2) Each name must be uniquely determined within its first

16 characters (excluding spacing and ALGOL words),

(3) The single letters I, J, K, L, M, and N must never be
defined globally.

NR#29,p.137

NAREC REFERENCE #29,p,'38

(4) The following names are defined globally in the various
packages automatically compiled into programs by the com-
piler as needed by the programs., In many programs, some or
all of them must not be used, but, in any event, good pro-
gramming practice dictates that they never be used (except
for the library function names and these only for bona fide

library function calls):

SUBSCR1 P
MULT1PLY

DI ViDE
FtADD

F1SUB

F1MUL

F1D1V

10 PACKAGE
PRINTOUT
TOP OF FORM
DOWNL1NE
END OF FiLE
LY*BRARY PACKAGE
ARCCOS
ARCSIN
ARCTAN

CoS

FL TO FX
FX TO FL
EXP

LN

LOG

SIN

SPLIT

SQRT

TAN

COMSIN

NR#29,p.138

A]TPENPIX D

- 4 abed:)

e e,

"ON 3dvi

"ON° 9044

ERIouY

31va

43002

133HE ONIOOJ N-IVITIN

139

APPENDIX E

NELIAC-N OPERATOR INSTRUCTION SHEET (4/4/63) Date

RCC Problem Number NRL Account Number
Problem Title Programmer
Sweep Telephone

Console Input System Unless Otherwise Specified, If stored object program may cow
Console Input System (3800-3bbb), specify Direct Operation,
Printer only (except reloadable dumps) unless otherwise specified.
1. Compile
Flowchart Tapes:
(1) F- (3) F- (5) F-
(2) F- (4) F- (6) F-
One Tape: LO c00,
More than one tape: LO ¢01, LO cO4, LO cO3.
Stop on bad compilation unless otherwise specified. CIRCLE OUMPS DESIRED.
2. Name List Dump LO c05.
3. OP Dump LO c09.
L., Dump Locations (if desired):
L0 cOa (if needed).
Box and Transfer.
5. Bioctal Dump and Comparison Load
Punch, LO c06, Printer, Load Tape, LO c07.
6. NAREC Dump
Both, LO c08, Printer.
7. Other Information:
Run Information Extra Copy LO cOd
Printer Code LO cOb. Punch Code LO cOc.

8. Special Instructions:

140

- - S T moepwtm mweew semmov Cupspavase
pue ‘soafasway) smexSoxd ay) Jo LJiqepeaa ay) sIZiwy
-xew ‘yoawmwes3oxd ayj £q paxinbax zandwod yemyoe ayy
30 93patmouy ay} SaZIWITUIW SNY) DVITIAN “2Fenduer
Lqmasse e 10 adendue] suryorw Temor ue 3urrinb
-3J uey; Jayyex afenduel reorjewrayyent € uy swresdoxd
J19Y] 9)1IM O} SI93ui3ua pue ‘S)STIUaIIS ‘szommieas
-01d sajqeus yomya aZendue] Sutmmmerdord jJuapuadapuy
-suryoew ‘pajusatro-waiqoad e st JVIIAN “rond

~-W0D U0 WOJI] SWexdold JO anTeA J3A0-A1red sapraoxd
pue ‘sastaswayy swexdoxd ay) Jo AjNiqepeas ayy saziwy
-xew ‘yawruresSoad ay) Aq pasrnbax tayndwiod Temoe ayy
J0 a3patmouy ay) sazZjWITUIW SNy} JVITAN ‘3Fenduey
Aquasse ue J0 afendue] auryoew remoe ue Surrmb
-aJx uey) Jayiea sfenduey rednyewayied € uy swesdoxd
J1aY} 3)1aA 0) SIIUTFUI pue ‘SISIIUATIS ‘SIawweld
-oad sajqeud yomym adendue] Suimmes3oad juapuadapur
-auyorw ‘pajustro-watqoxd e st JVIIAN ‘Iand

W Y ‘1ayoreqy “IIIf-wod N-DJVITAN 2y} Jo sueaw £q DAYVN 3y} U0 pajuaw "W Y ‘Tayoreyl C“IIIf-wod N-DVITAN ay) JO sueaw Aq DIYVN 3y) Uo pajusw
‘M °r ‘zopuerrey | -a1dwr aBendue] DYTFIAN W Jo UOISIas 3y} ‘N-DVITAN ‘M °r ‘aapuerrey °IIf -atdurt a8endue JVTIAN 943 JO UOISIAA 3y} ‘N-DIVITAN
N-JDVITAN 1 J0 uonydiIdSap TelIo)N} B surejucs j1odarx syl N-JVITIN ° yo uondirdsap rewrony e surejuod jxodas syl
Surmmeadoad *£961 ‘L1 aung ‘dd op1 “J9ydIRYL ‘W ‘M pue Japuerrey Burmwrexdoxd *£961 ‘L1 aunp ‘“dd g1 -I3yOYeylL ‘W M pue Japuelrey

1ndurod ‘M P 4q ‘LHOd 3Y TVINOLAL V — N-OVITAN Jandurod ‘M °r g ‘LHOd Y TVIHOLAL V — N-JVITAN
reonewayyeN ‘1 *9L6G 120day *Lxoyexoqer] Yoreasay TeAeN TeoyewayyeW ‘| *9L6S 110day *A30reroqe] YoIvassy [eAeN
QAIIISSVIONN AIIIISSVIONN
AIATJISSY'TONN JALLISSYTONN

"W Y ‘asyorey
‘M ‘zapuerrey
N-JVITAN

Suiweadoad
gaynd 102
TeonewayjeN

*INYIOUE 0 IINC
-wod duo woty sweidoxd Jo anrea JaA0-AxIed Sapraoxd
pue ‘saatasway) swreadoad oy} Jo AJIIqepeat oYy} SOZIWN:
-xew ‘zawwreadoad ay) £q paainbax xayndwod remde Iy
Jo adpaimouy ay) SAZIWMWIW SNy} JVITIAN ‘2denduer
Ajquasse ue 10 s3enldue] sunyorw femor ue Jutrinb
-3 uey3 Jayres adenldue] reoryewayiewl ® uy swesSoad
J19Y] 3}1aM 0] SIa3ulduad pue ‘S)SIJUIDS ‘SIdwimesd
-oxd sarqeua yoym adendue] Suimwe18oid juapuadapu:
-autydew ‘pajuatro-waigoad ® S1 JVITAN °“I9nd
-wod N-JDVITIAN 9y} Jo sueaw 4q DAYVN 3y} UO pajuaw
-ardury adenduel DYITAN 3U} JO UOISIAA Ay} ‘N-OVITAN
30 uondiIdsap TerIoIN] B surejuod jrodas syl

*£961 ‘L1 aunp “dd OpT *I9Yd-eyL "W " pue Jopuelred
‘M P Aq {LHOd FY TVIHOLAL V — N-JVI'TAN
*9L6G 110day °*A10TeI0qET YOIRISIY [EAEN

QAIIISSVIONN

‘W H ‘aaydyeyl
M I ‘lapuelrey
N-JVITAN

Sutmwreadoxd
xayndmod

reoREWagIE

*I3yjoue 03 1aynd

-wod auo woJtj surexdosd jo anrea 13a0-£1yed sapraoxd
pue ‘saatasway} swerdoxd ayy jo AjIIgepeas Ay} SaZIU
~xew ‘Jawmrwrexdoad ayy £q paxinbax xayndwod Temyoe ayy
Jo adpajmouy ay} sazZrwTuim sny) DVITAN ‘93enduey
Alquasse ue 30 afenldue] aurydew remoe ue Sursnb

-3J wey) aayjed afendue] reonewayyew € uy swesdoxd
J19Y} 3j1aM 0] SIJaui8ua pue ‘SiSTjualds ‘srawwresd
-oxd sajqeua yoym a8enduer Surwruresload jyuapuadapur
-auiyoew ‘pajuatao-warqoad € st QVITAN ‘aard

-ardwy afendue JYITAN 8} JO UOISIAA ay} ‘N-OVITAN
10 uondiadsap retioIn} € surejuod jxodat sl

._.u_ﬂ-aoo N-JVITAN 24} JO Sueawl 4q DFUVN 3y} U0 pajuaw

‘€961 ‘LT aunp ““dd opr “IYdJEYL ‘W "H pue Japuerey
"M r A9 ‘LY0d Y TVIHOLAL V — N-OVILAN
*91,6¢ 1x0day °A30reaoqer] YOoXessay TeAeN

JILLISSVTIONN

W eemea L R N R N

L emeas "8 R Ee Ul telErI e Y0EPSE0EUN0E s 24000 TIEEITEIIROERIRIRES

